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Abstract

While backward error analysis does not generalise straightforwardly to the strong and
weak approximation of stochastic differential equations, it extends for the sampling of ergodic
dynamics. The calculation of the modified equation relies on tedious calculations and there
is no expression of the modified vector field, in opposition to the deterministic setting. We
uncover in this paper the Hopf algebra structures associated to the laws of composition and
substitution of exotic aromatic S-series, relying on the new idea of clumping. We use these
algebraic structures to provide the algebraic foundations of stochastic numerical analysis with
S-series, as well as an explicit expression of the modified vector field as an exotic aromatic
B-series.
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1 Introduction

Consider overdamped Langevin dynamics on the d-dimensional torus Td of the following form,

dX(t) = f(X(t))dt+ dW (t), (1)

where f = −∇V is a gradient vector field deriving from a C∞ potential V , W is a standard
d-dimensional Brownian motion on a probability space equipped with a filtration (Ft)t>0 and
fulfilling the standard assumptions. There are three main types of approximations of (1).
A strong approximation focuses on approaching X(t) for a given realisation of W . A weak
approximation approaches averages of functionals of the solution E[ϕ(X(t))] where ϕ ∈ C∞(Td,R)
is a smooth test function. An approximation for the invariant measure approximates averages of
functionals at the equilibrium for ergodic systems. This paper develops new algebraic tools for
the creation and study of integrators for the approximation of overdamped Langevin dynamics
in Td and also on manifolds M, in the weak sense and for the invariant measure.

For the study of ordinary differential equations y′ = f(y), backward error analysis [41]
rewrites a one-step numerical integrator yn+1 = Φh(yn) as the exact solution of a modified
problem ỹ′ = f̃(ỹ). The modified vector field f̃ typically writes as a formal series in f and its
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partial derivatives (a Butcher series) and the properties of the integrator (order, preservation
of invariants or measures, symplecticity,...) can be read on f̃ . Backward error analysis was in
particular instrumental in the understanding of the long time energy preservation property of
symplectic methods [9]. In the stochastic setting, it is known since [88] that backward error
analysis does not generalise straightforwardly for the Euler-Maruyama method in the strong or
weak sense. The approach is successful in [91] for the Milstein scheme, but only up to order two.
In [33], the idea of backward error analysis is generalised in the context of the approximation
for the invariant measure: assume that the exact and numerical dynamics are ergodic, that is,
the solution of (1) behaves in long time according to a probability density ρ∞:

lim
T→∞

1

T

∫ T

0
ϕ(X(t))dt =

∫
Td

ϕ(x)ρ∞(x)dx almost surely,

and similarly, the integrator follows in long time a density ρh, where h is the timestep. Then,
using the idea of backward error analysis, the paper [33] provides an explicit expansion of the
invariant measure ρh of the integrator of the form

ρh = ρ∞ + hρ1 + h2ρ2 + . . .

The idea was generalised for the creation of modified equations in [3]: given an equation of
the form (1) and an integrator Xn+1 = Φh(Xn) satisfying mild assumptions, there exists a
(truncated) modified vector field f̃ [N ] = f+hf1+ . . .+hNfN for any N , such that the integrator
applied to the following modified problem has order N for sampling the invariant measure of (1):

dX̃(t) = f̃ [N ](X̃(t))dt+ dW (t).

The modified vector field f̃ = f + hf1 + . . . is iteratively defined in [3] as a formal power series
in h in relation to the measure ρh of the integrator:

L∗ρ1 = −div(f1ρ∞), L∗ρ2 = −div(f1ρ1)− div(f2ρ∞), . . .

where L is the generator of equation (1). Note that f̃ is not uniquely defined by these identities.
The calculations of the modified vector field f̃ are intricate, so that the algebraic tool of exotic
Butcher series was introduced in [57] to simplify the approach. While the original approach of [3]
works at any order, there is no proof in [57] that the calculations rewrite with exotic B-series
beyond order three. In addition, there is no explicit expression of the modified vector field f̃ .
This paper answers these problems by providing the Hopf algebra foundations of exotic series
and by using them to give a new explicit expression of the modified vector field f̃ as an exotic
B-series at any order.

Butcher-series were first introduced in [19, 42] (see also the textbooks [41, 20, 21] and the
review [73]) for the study of order conditions for Runge-Kutta methods in numerical analysis.
They were later applied successfully to a variety of different fields such as geometric numerical
integration [41], quantum field theory [28], rough paths [40, 43], or to stochastic numerical
analysis. We mention in particular the aromatic extension of B-series introduced in [27, 47]
for the study of volume-preserving integrators. They allow to compute the divergence of a
B-series, and were later studied in [72, 76, 11, 36, 12, 55, 54] for their algebraic, geometric,
and numerical properties. For stochastic numerical analysis, we mention in particular the early
works [16, 49, 17] that first introduced stochastic trees and B-series for the strong convergence
of SDEs, and the works by Rößler [81, 82, 83, 84] and Debrabant and Kværnø [31, 30, 32] for
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the design and analysis of high order strong and weak integrators on a finite time interval, as
well as the works [8, 52]. The different stochastic extensions of B-series were recently formalised
and unified into the exotic aromatic S-series formalism [57, 58, 53, 14] for the study of stochastic
numerical analysis in the weak sense and for the invariant measure. It was then shown in [56]
that the exotic aromatic formalism is a very natural extension of B-series and aromatic B-series
as they all satisfy similar universal geometric properties.

We present in this paper the algebraic and combinatorial structures related to the exotic
aromatic S-series and study their concrete applications in stochastic numerical analysis. This is
not straightforward as the Hopf algebra structures used in the deterministic case [24, 26] do not
extend naturally to the stochastic case. We introduce the concept of decorated aromatic S-series,
defined using decorated aromatic forests, to simplify the study of the algebraic structures
related to the exotic aromatic S-series. Our investigation involves the study of the D-algebra
structure [77] over the decorated aromatic forests, and we employ this structure to introduce
a Hopf algebroid [67, 75], which we refer to as the Grossman-Larson Hopf algebroid. This
Hopf algebroid is intricately linked to the composition law of decorated aromatic S-series. The
substitution law does not generalise straightforwardly with decorated aromatic S-series and the
main difficulty comes from the aromas, as first observed in [11] in the context of aromatic forests.
We introduce the concept of clumped forests, which represent monomials of aromatic trees and
form the universal enveloping algebra of aromatic trees. The difference between aromatic forests
and clumped forests lies in the aromas that are attached to the rooted components in the latter
case: · ̸= · . These clumped forests are essential in establishing the algebraic foundations
required for the substitution law, in the spirit of [22, 68, 69, 70, 80]. Subsequently, we proceed to
construct the space of exotic aromatic forests using the decorated aromatic forests we introduced
earlier. We use our analysis of algebraic structures over decorated aromatic forests to present
the composition [14] and substitution law for the exotic aromatic S-series.

The Hopf algebra structures related to exotic aromatic S-series allow us to elegantly formalise
stochastic numerical analysis theory. The composition law gives the methodology to derive order
conditions for arbitrarily high orders, and to study the accuracy of the composition of different
numerical integrators and of postprocessors [90]. The substitution law allows us to derive a
new explicit expression of a modified vector field that writes as an exotic B-series for backward
error analysis and for creating modified equations in the Euclidean case. This simplifies greatly
the computation of the modified vector field and the exotic B-series expression ensures that
the modified vector field satisfies important natural geometric properties such as orthogonal
equivariance [56].

The structure of the paper is the following. Section 2 presents a comprehensive summary
of the new algebraic structure of exotic aromatic forests, relying on the novel idea of clumping
and on two Hopf algebras of trees. The numerical applications are gathered in Section 3 and
include the algebraic formalisation of stochastic order theory in the weak sense and for the
invariant measure, the application of the composition law to the composition of integrators
and postprocessors, and the application of the substitution law to backward error analysis and
modified equations. We then present in Section (4) the detailed study of the algebraic structures
associated to exotic aromatic forests.

2 Exotic aromatic and clumped forests

We consider graphs π = (V,E, S) where V is a finite set of vertices and E ⊂ V × V is a set of
directed edges. The empty graph is included and written 1. If e = (v, w) ∈ E, the edge e is going
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from the source v to the target w, v is a predecessor of w, and w is a successor of v. The stolons1

in S ⊂ V × V/⟨(x, y) − (y, x)⟩ link some of the vertices without successors by pairs, but these
vertices are in at most one stolon. The vertices that do not have a successor and are not part of
stolons are called roots and the vertices that are not in stolons and do not have predecessors are
called leaves. The graphs have two kinds of connected components: the ones that have a root,
called trees, and the other ones, called aromas. The aromas either have a stolon or have a cycle,
that is a list of vertices {v1, . . . , vn} where vi+1 is the successor of vi and v1 is the successor of vn.
We call aromatic forests, gathered in the set AF , the equivalence classes of such graphs, where
two graphs are equivalent if there exists a bijection between their sets of vertices and edges that
preserve successors, predecessors, and stolons. When drawn, by convention, the orientation of
the edges goes from top to bottom and in counterclockwise direction for cycles.

We consider the following subsets of AF . The set of trees T contains the connected aromatic
forests with one root. The trees with up to four vertices are

, , , , , , , .

We obtain the set F of forests by taking all possible unordered monomials of trees, including
the empty forest 1.

F = {1, , , , , , , , . . . }

The subset of aromatic forests with n roots is written AFn, which gives us a first grading on AF .
In particular, the set of aromas is

A = AF0 = {1, , , , , , , . . . },

with the double edge denoting a stolon, and the aromatic trees are in

AT = AF1 = { , , , . . . }.

Note that the set AF ≃ A × F of aromatic forests is the product of the sets of aromas and
forests. The vector space spanned by a given set is written in calligraphic font. For instance,
we write AF = SpanR(AF ).

Note that the definition of aromas taken here is more general than in [47, 27, 11], as we
choose to include stolons among the aromas. The reason is that the combinatorial structure of
stolonic and cyclic aromas is similar, and the exotic extension of the standard aromatic forests
relies in particular on stolons.

Decorated aromatic forests are aromatic forests π ∈ AF endowed with a decoration of their
vertices α : V (π) → D for a given set D. A morphism φ : (π1, α1) → (π2, α2) between
decorated aromatic forests is a graph morphism φ : π1 → π2 such that α1 = α2 ◦ φ. The group
of automorphisms is denoted by Aut(π, α) and σ(π, α) := |Aut(π, α)|. The set of decorated
aromatic forests is denoted by AFD and the corresponding vector space by AFD. We will often
omit writing α for simplicity and will denote the elements of AFD by π.

The vector space AFD of decorated aromatic forests forms a commutative algebra (AFD, ·)
which can be defined as the symmetric algebra SAD

(AT D) of decorated aromatic trees AT D

1In botany, stolons are horizontal connections that link the base of two plants, allowing a plant to clone itself.
Strawberry plants are an example of plants with stolons.
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over the ring of decorated aromas AD. We consider the symmetric algebra CFD := S(AT D) of
decorated aromatic trees AT D over the base field R. The basis of CFD is denoted by CFD and
its elements are called clumped forests. We note that · ̸= · in CFD. Some elements
of CFD are listed below:

· , · , · · .

A detailed study of the algebraic structure of decorated aromatic and clumped forests is
presented in Section 4.

2.1 Decorated aromatic S-series

Let I be a finite set of indices. Then the elementary differential fk
I is defined as:

fk
I :=

∂|I|fk∏
i∈I ∂xi

.

We define the elementary differential map FD by

FD(π)[ϕ] =
∑

iv=1,...,d
v∈V

δIS

(∏
v∈V

f iv
α(v),IΠ(v)

)
ϕIR ,

where V is the set of vertices, R is the set of roots, Π(v) is the set of predecessors of v, δIS
identifies the indices of the stolons, that is, ix = iy if (x, y) ∈ S, and fα(v) is the vector field
corresponding to the vertices decorated by α(v). For example,

FD( )[ϕ] =
d∑

i,j,k,l,m,n,p=1

f igigjjf
kf lgmij g

nfp
nϕm,p.

where f and g are vector fields corresponding to • and ◦, respectively.
Let us introduce S-series over decorated aromatic forests. Let AFD be the space of formal

sums of the following form ∑
π∈AFD

a(π)π, with a ∈ AF∗
D.

It is the completion with respect to the graduation given by the number of vertices. We
extend FD by linearity to AFD. Recall the symmetry coefficient σ(π) := |Aut(π)|. Let the
map δσ : AF∗

D → AFD be the isomorphism between the dual and the completion given by

δσ(a) =
∑

π∈AFD

a(π)

σ(π)
π.

We will abuse the notation and use δσ to denote analogous isomorphisms for other spaces. The
space will be made clear from the context and will always be the domain of the functional to
which δσ is applied.

Let |.| : AFD → N be a map defining a finite grading on AFD, that we call the order on
decorated aromatic forests.
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Definition 2.1 An S-series over decorated aromatic forests is defined for a ∈ AF∗
D and some

smooth vector fields fd, d ∈ D, as the following formal power series

Sh
(fd)d∈D

(a)[ϕ] :=
∑

π∈AFD

h|π|
a(π)

σ(π)
FD(π)[ϕ], for a ∈ AF∗

D.

We often omit the dependency in the fd and write for simplicity Sh(a) and S(a) = S1(a).
For example, let D = {•, ◦} and FD(•) = f, FD(◦) = g, then,

Sf,g(a)[ϕ] =
(
1 + a( ) div(f) + a( ) div(g) + a( )⟨f, f⟩+ · · ·

)
ϕ

+
(
1 + a( ) div(f) + a( ) div(g) + a( )⟨f, f⟩+ · · ·

) d∑
i=1

f iϕi + · · · ,

with ⟨−,−⟩ the standard Euclidean scalar product.
S-series are used to represent formal sums of differential operators. We use S-series to

represent formal sums of vector fields by using the identification between first order operators
and vector fields and by requiring the corresponding functional a0 : AFD → R to satisfy

supp(a0) ⊂ AT D.

Such series are called B-series, written Bh(a0), and a0 is called an infinitesimal character.
B-series are used in deterministic numerical analysis [41] for the representation of numerical
integrators y1 := Ψh(y0) applied to y′ = f(y) as Ψh(y0) = y0 + Bh(a0)(y0) for an infinitesimal
character a0. This is typically done by Taylor expanding the numerical method with respect to
its time stepsize h. Given any smooth function ϕ : Rd → R, the composition of Ψh : Rd → Rd

with ϕ is represented by the following exponential of B-series:

ϕ ◦Ψh = FD

(
exp·

(
δσ(a0)

))
[ϕ], with exp·(x) := 1 +

∞∑
k=1

x·k

k!
.

We use the formalism of aromatic forests and the convolution product ⊙ : AF∗
D⊗AF∗

D → AF∗
D

defined as a ⊙ b := (a ⊗ b) ◦ ∆ with ∆ : AFD → AFD ⊗ AFD being the deshuffle coproduct
(not AD-linear) over decorated aromatic forests to write the exponential of B-series as an S-series
as

ϕ ◦Ψh = Sh(exp⊙(a0))[ϕ] with exp⊙(x) := 1 +

∞∑
k=1

x⊙k

k!
. (2)

2.2 Exotic aromatic S-series

Exotic aromatic forests are a specific class of decorated aromatic forests that naturally appears
in the study of numerical methods for solving stochastic differential equations with additive
noise [57, 58, 53]. We use decorations to encode paired nodes, called lianas, that allow to
represent the Laplacian of a Taylor series in a jet bundle. The exotic aromatic forests are
defined in the following way, where we mention that additional decorations could be added, in
the spirit of partitioned S-series.

Definition 2.2 An exotic aromatic forest is a decorated aromatic forest (π, α) ∈ AFD with the
decorations D = {•} ∪ N, N = {1, 2, 3, . . . }, that follows the following rules. All vertices of π
are black, except the leaves that can be either black or numbered. If a natural number is used as
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a decoration, then it must decorate two leaves, that is, |α−1(n)| ∈ {0, 2} for any n ∈ N. Two
exotic aromatic forests (π1, α1) and (π2, α2) are considered to be identical if π1 = π2 and there
exists a map φ ∈ SN such that α1|N = φ ◦ α2|N. The pair of numbered leaves that correspond to

the same number is called a liana, gathered in the set L ⊂ V × V/⟨(x, y)− (y, x)⟩. The order of
an exotic aromatic forest π is the following, where V• denotes the number of black vertices of π,

|π| = |V•|+ |L| − |S| ,

where S ⊂ V × V/⟨(x, y)− (y, x)⟩ is the set of stolons.

The exotic aromatic trees of order up to two are the following. Note that the order does not
coincide with the number of black vertices in general.

, ,
1 1

, ,

1

1 , ,
1

1 .

The set of exotic aromatic forests is denoted by EAF . Exotic aromatic forests with one root are
called exotic aromatic trees and form a set denoted by EAT . Exotic aromatic forests without a
root are called exotic aromas and form a set denoted by EA. The corresponding vector spaces
are denoted by EAF , EAT and EA, respectively. We refer to Appendix A for further examples.
We emphasize that the order of a forest is never negative. Note also that the following exotic
aromatic forests are identical:

3
1 1 2 2 3

=

2
3 3 1 1 2

.

To obtain exotic aromatic S-series, we define the elementary differential map by

FE(π)[ϕ] =
∑

iv=1,...,d
v∈V

δIS∪L

(∏
v∈V•

f iv
IΠ(v)

)
ϕIR ,

where R is the set of roots, Π(v) is the set of predecessors of v, and δIS∪L
identifies the indices

of the lianas and stolons, that is, ix = iy if (x, y) ∈ S ∪ L. For instance, we have

π =

1
2 1

2 , FE(π)[ϕ] =
d∑

i,j,s,l1,l2=1

f i
il1f

sfs
l2f

j
l1
ϕjl2 .

Given a coefficient map a ∈ EAF∗, an exotic aromatic S-series is the following formal series (see
Definition 2.1),

Sh(a) :=
∑

π∈EAF

h|π|
a(π)

σ(π)
FE(π), S(a) = S1(a),

where the symmetry coefficient σ(π) counts the number of graph automorphisms leaving π
unchanged. The S-series formalism allows us to rewrite the tedious combinatorics of numerical
analysis in terms of simple graph operations that do not involve the dimension of the problem.

Theorems 2.5 and 2.8 present the composition and substitution laws of exotic aromatic
S-series used in Section 3 to describe the composition of numerical methods, the construction
of the modified equation of a method, and the backward error analysis. The proofs are derived
straightforwardly from the analysis of Section 4.
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Definition 2.3 [14] The Butcher-Connes-Kreimer coproduct on EAF is defined as

∆BCK(π) :=
∑
π0⊂π

(π \ π0)⊗ π0,

where the sum runs over all rooted subforests π0 ∈ EAF of π such that π \ π0 ∈ EAF and there
are no edges going from π0 to π \ π0 in π. We note that the paired number vertices cannot be
separated across different sides of the tensor product.

Example 2.4 For example,

∆BCK(

1
1

) = 1⊗
1

1
+ 1 1 ⊗ + ⊗

1
1
+

1

1 ⊗ +

1 1 ⊗ +

1

1 ⊗ + 1
1 ⊗ +

1
1 ⊗ 1,

∆BCK(
1 1 2

2

) = 1⊗ 1 1 2
2

+ 1 1 ⊗ 2
2

+ 2 2 ⊗ 1 1
+ 1 1 2 2 ⊗ +

2
2 ⊗ 1 1

+ 1 1 2
2 ⊗ +

1 1 2
2

⊗ 1.

We present in Appendix A the values of ∆BCK over all connected forests and exotic aromas up
to order 3.

Theorem 2.5 (Composition law) [14] Let S(a) and S(b) be two exotic aromatic S-series and
let ϕ be a test function. Then,

S(a)[S(b)[ϕ]] = S(a ∗ b)[ϕ], with a ∗ b = (a⊗ b) ◦∆BCK ,

with ∆BCK being the Butcher-Connes-Kreimer coproduct over exotic aromatic forests.

We define an extension CEF1 of the concept of decorated clumped forests to the exotic
context as CEF1 := S(EAT ). Some elements of CEF1 are

1 1 ·
2

2
,

3 3 4
4 · .

Note that exotic aromatic trees are a subset of primitive elements of EAF with the full set of
primitive elements being discussed in Section 4.4.

We consider a particular case of the substitution law from Theorem 4.19 in which the black
vertices are substituted by δσ(b0) ∈ EAT while the numbered vertices are not changed, that is,
a number vertex n is substituted by n for n ∈ N. This allows us to simplify the definition of the
CEM coaction.

Definition 2.6 Let the CEM coaction ∆CEM : EAF → CEF1 ⊗ EAF over exotic aromatic
forests be defined as

∆CEM (π) :=
∑
p⊂π

p⊗ π/p,

where the sum is over all clumped exotic subforests p ∈ CEF1 that cover all black vertices and π/p
is the exotic aromatic forest obtained by contracting the exotic aromatic trees of p into black
vertices. If the forest π ∈ EAF doesn’t have valid subforests p ∈ CEF1, then ∆CEM (π) = 1⊗ π.
For details see the proof of Theorem 4.23.

8



Example 2.7 The substitution on exotic aromatic forests has additional difficulties compared to
the deterministic context. While the coaction ∆CEM works with a similar idea to the partitions
of trees as in [26, Thm. 3.2], it ensures that paired vertices stay in the same component and it
sums over all possible combinations of clumped exotic forests in CEF1 (and not exotic aromatic
forests) in the left side of the tensor product. For instance, we have

∆CEM (

1
1

) =

1
1 ⊗ +

1

1 ⊗ + ⊗ 1 1
+ ⊗

1
1

+

1
1 ⊗ +

1

1 ⊗ + · ⊗ 1 1
+ ⊗

1
1

,

∆CEM (
1 1 2

2

) =
1 1 2

2

⊗ + ⊗ 1 1 2 2
+

1 1 ⊗ 2 2

+
2

2

⊗ 1 1
+

1 1 ⊗ 2
2

+ ⊗ 1 1 2
2

.

We present in Appendix A the values of ∆CEM over the elements of EA and Prim(EAF) up to
order 3.

We use the discussion from Section 4.3 to obtain Theorem 2.8.

Theorem 2.8 (Substitution law) Let a ∈ EAF∗, b0 ∈ EAT ∗, then,

SSf (b0)(a) = Sf (bc ⋆ a), with bc ⋆ a = (bc ⊗ a) ◦∆CEM ,

where bc is the character of CEF1 that extends b0 and ∆CEM is defined in Definition 2.6.

Theorem 4.23 provides a simplified procedure to compute the substitution law for exotic
aromatic S-series using the Hopf algebra structure of CEF .

3 Backward order analysis and modified equations for stochastic
differential equations

In the numerical analysis of ordinary differential equations, the composition and substitution
of B-series have a variety of applications, including the derivation of order conditions, the
composition of numerical methods, backward error analysis, or high-order integration based
on modified equations (see [26] and references therein). The aromatic B-series appear naturally
in the study of volume-preserving integrators and we refer to [27, 47, 11] for details. The stolons
appear when studying projection methods on embedded manifolds, while the lianas are used
in stochastic numerical analysis (see [53]). In this section, we focus on the applications of the
composition and substitution laws for the numerical approximation of stochastic differential
equations. As described in the original references [57, 58, 14], exotic aromatic B-series and
S-series are a crucial calculation tool for the high-order approximation of SDEs in the weak
context and for the invariant measure. There are several major differences with the deterministic
context, especially on the concept of backward error analysis. Most importantly, our analysis
gives an explicit expression as an exotic B-series of the modified vector field for the backward
error analysis and for using modified equations for the invariant measure in Rd (see Theorem 3.10
and Theorem 3.14).
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3.1 Stochastic order theory with exotic aromatic S-series

We consider stochastic differential equations with additive noise on the d-dimensional torus
M = Td or on smooth compact manifolds M = {x ∈ Rd, ζ(x) = 0} of codimension 1 with a
smooth constraint ζ : Rd → R of the form

dX(t) = ΠM(X(t))f(X(t))dt+ΠM(X(t)) ◦ dW (t), X(0) = x ∈ M, (3)

where x is assumed deterministic for simplicity, ΠM : Rd → Rd×d is the orthogonal projection on
the tangent bundle of the manifold M, f is a smooth vector field, W is a standard d-dimensional
Brownian motion on a probability space equipped with a filtration (Ft)t>0 and fulfilling the
standard assumptions. Dynamics of the form (3) include overdamped Langevin dynamics [62]
when f = −∇V for V a smooth potential. If M = Td, the orthogonal projection is ΠM = Id
and equation (3) reduces to

dX(t) = f(X(t))dt+ dW (t).

There are three main types of approximations of (3). A strong approximation focuses on
approaching X(t) for a given realisation of W . A weak approximation approaches averages of
functionals of the solution E[ϕ(X(t))] where ϕ ∈ C∞(N ,R) is a smooth test function defined
on an open neighbourhood N of M. An approximation for the invariant measure approximates
averages of functionals at the equilibrium for ergodic systems. In this paper, we focus on the
algebraic calculation underlying the high order approximation of (3) in the weak sense and for
the invariant measure. We give the definitions of order in terms of S-series directly and we refer
to the textbooks [74, 62, 3] for the detailed analysis on non-compact manifolds.

The generator of equation (3) in Td can be represented as an exotic S-series S(l) with
coefficient map l ∈ EF∗. It is given by the following linear combination of the primitive elements
of order one:

δσ(l) = +
1

2 1 1 , Lϕ = S(l)[ϕ] = ϕ′f +
1

2
∆ϕ,

where we recall that δσ is given by

δσ(a) =
∑

π∈EAF

a(π)

σ(π)
π.

In the manifold case, we add a new decoration ◦ to EAF that represents the gradient of the
constraint n = ∇ζ : Rd → Rd and we extend the elementary differential with FE(◦) = n. The
definition of the S-series is

Sh(a) =
∑

π∈EAF
h|π|

a(π)

σ(π) |n||V◦|
FE(π), |π| = |V•|+

|V◦|
2

+ |L| − |S| ,

and the generator becomes

δσ(l) = − − 1

2
+

1

2
+

1

2 1 1 − 1

2
,

Lϕ = S(l)[ϕ] = ϕ′f − |n|−2 ⟨n, f⟩ϕ′n− 1

2
|n|−2 div(n)ϕ′n

+
1

2
|n|−4 ⟨n, n′n⟩ϕ′n+

1

2
∆ϕ− 1

2
|n|−2 ϕ′′(n, n).

10



The quantity of interest in the weak context is u(t, x) = E[ϕ(X(t))|X(0) = x]. It satisfies the
following formal expansion in a neighbourhood of M, derived from the backward Kolmogorov
equation (see, for instance, [44, 35, 3, 50, 51, 53]),

u(x, h) = exp(hL)[ϕ](x) = Sh(e)[ϕ](x), e = exp∗(l) :=
∞∑
n=0

1

n!
l∗n,

where we recall that ∗ is the composition law (see Theorem 2.5). The first terms of e in Td are

δσ(e) = 1+ +
1

2 1 1 +
1

2
+

1

2
+

1

2 1 1 +
1

4
1 1

+
1

2
1

1 +
1

8 1 1 2 2 + . . . (4)

In opposition to the deterministic formalism of Butcher trees, the S-series of the exact flow is
not the exponential of a combination of trees, but the exponential of a combination of forests,
as the primitive elements of exotic forests do not reduce to exotic trees:

ET ⊊ Prim(EF), T = Prim(F).

This major difference with deterministic geometric numerical integration makes, in particular,
backward error analysis much more tedious in the stochastic case, as we rely on an additional
non-trivial operation, similar to the integration by parts, that transforms primitive elements
into exotic trees. In the manifold case, the first terms of S(e) can be found in [58]. Consider
now a one-step integrator for solving (3) of the form

Xn+1 = Φh(Xn), X0 = x ∈ M, (5)

where h is the stepsize of the method and the dependence in random variables is omitted for
clarity. We assume that the method (5) is an exotic aromatic S-series method, that is, the
numerical analogue of u(x, h) satisfies the following formal Talay-Tubaro expansion [89] in a
neighbourhood of M:

E[ϕ(X1)|X0 = x] = Sh(a)[ϕ](x).

For instance, the following class of stochastic Runge-Kutta integrators presented in [53] satisfy
this assumption naturally in Td:

Y i
n = Xn + h

s∑
j=1

ai,jf(Y
j
n ) +

√
hdiξn, i = 1, . . . , s, (6)

Xn+1 = Xn + h
s∑

i=1

bif(Y
i
n) +

√
hξn,

where we use one Gaussian vector ξn ∼ N (0, Id) at each step for simplicity. Thanks to the
result [14, Prop. 4.3] (see also [41, 82]), the exotic S-series S(a) of methods of the form (6) is
given by the following coefficient map,

τ =
i

j
1 2

1
2
k

l m

a(τ) =

s∑
i,j,k,l,m=1

biai,jd
2
jdibkak,lak,m,

where the decoration of τ by {i, j, k, l,m} is added for illustration purposes. The coefficient
maps a of the exact flow and of stochastic Runge-Kutta methods (6) are naturally characters
over EF equipped with the concatenation product, that is, a satisfies

a(π1 · π2) = a(π1)a(π2), π1, π2 ∈ EF .

11



We denote Char(S) the set of characters over a subset S of EF equipped with the concatenation
product.

The standard definition of weak order [89, 74] rewrites in the following way with exotic
aromatic S-series.

Definition 3.1 Let an integrator (5) with S-series Sh(a) such that a− e ∈ EAF∗
≥p+1, i.e., if a

and e coincide on all exotic aromatic forests of order up to p. Then, the integrator has (at least)
weak order p for solving (3), that is, for T > 0 and h ≤ h0 small enough with Nh = T , for the
initial condition X0 ∈ M, for all test functions ϕ ∈ C∞(N ,R), the following estimate holds

|E[ϕ(Xn)]− E[ϕ(X(nh))]| ≤ C(h0, T, ϕ)h
p, n = 0, . . . , N.

An integrator of at least weak order one is called consistent.

Example 3.2 Consider for instance the Euler-Maruyama method in Td:

Xn+1 = Xn + hf(Xn) +
√
hξn, ξn ∼ N (0, Id). (7)

The exotic aromatic S-series of the Euler-Maruyama method is given by

exp·(δσ(l)) = δσ(exp
⊙(l)) = 1+ +

1

2 1 1 +
1

2
+

1

2 1 1 +
1

8 1 1 2 2 + . . . , (8)

where the convolution product is a⊙ b := (a⊗ b) ◦∆ with ∆ the deshuffle coproduct over exotic
aromatic forests (see Section 2.1). Comparing the S-series (4) and (8) shows that, under the
standard regularity assumptions [89, 74, 3], the method is of weak order one.

The overdamped Langevin dynamics (3) with f = −∇V are ergodic (see, for instance,
the works [62, 33, 3]), that is, there exists a unique invariant measure dµ∞ on M that has
a probability density ρ∞ with respect to dσM, the canonical measure on M induced by the
Euclidean metric of Rd, such that for all test functions ϕ,

lim
T→∞

1

T

∫ T

0
ϕ(X(t))dt =

∫
M

ϕ(x)dµ∞(x) almost surely, ρ∞(x) ∝ exp (−2V (x)) .

The invariant measure is the unique solution to L∗dµ∞ = 0. Similarly, a consistent integrator (5)
is ergodic if there exists a unique probability measure dµh that is absolutely continuous w.r.t. the
measure dσM such that for all test functions ϕ ∈ C∞(N ,R) and all initial condition X0 ∈ M,

lim
N→∞

1

N + 1

N∑
n=0

ϕ(Xn) =

∫
M

ϕ(x)dµh(x).

We refer for instance to [33] for appropriate assumptions to obtain the ergodicity of the numerical
scheme. We take over the equivalence relation ∼ on exotic aromatic S-series and their dual
defined in [57, 58, 14]. This relation is called the integration by parts as

a ∼ b ⇒
∫
M

Sh(a)[ϕ](x)dµ∞(x) =

∫
M

Sh(b)[ϕ](x)dµ∞(x),

and involves detaching and grafting back edges. The integration by parts allows one to transform
primitive elements into trees. We give examples and refer to [57, 58, 14] for the detailed
definition:

1 1 ∼ −2 ,
1

1 ∼ − 1 1 − 2 ,
1

1 ∼ − 1 1 − 1
1

− 2 ,
1 2

1 2 ∼ − 1 2 2
1 − 2

1
1 .
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The approximation for the invariant measure is defined algebraically in the following way. We
shall see that it can also be understood as the stochastic extension of pseudo-volume-preserving
approximations.

Definition 3.3 Consider a consistent ergodic integrator (5) with S-series Sh(a) and invariant
measure dµh. Then, if a − δ1 ∼ EAF∗

≥p+1, the integrator has (at least) order p for sampling
the invariant measure of (3), that is, for h ≤ h0 small enough and ϕ ∈ C∞(N ,R), the following
estimate holds, ∣∣∣∣∫

M
ϕ(x)dµh(x)−

∫
M

ϕ(x)dµ∞(x)

∣∣∣∣ ≤ Chp.

An integrator of weak order p immediately has at least order p for the invariant measure as e ∼ δ1,
but there exist methods with high order for the invariant measure and weak order one (see, for
instance, for the underdamped and overdamped Langevin equation [13, 59, 60, 3, 4, 57, 58]).
An important result for our analysis in the Td case with a gradient vector field f = −∇V is
in [14, Thm. 5.8]. We mention that the assumption of this result is naturally satisfied for the
stochastic Runge-Kutta integrators (6).

Proposition 3.4 ([57, 14]) There exists an algorithm that transforms ac ∈ Char(EF) over
exotic forests into an equivalent character ac ◦A∗ ∈ Char(S(ET ))/∼ over the symmetric algebra
spanned by exotic trees. This defines a map A(.) = . ◦ A∗ : Char(EF) → Char(S(ET ))/∼ such
that ac ∼ A(ac). Moreover, A naturally induces a map A : Prim(EF)∗ → ET ∗/∼ satisfying the
identity A|ET ∗ = id.

The precise algorithm for computing A is omitted for simplicity as it can be found in [57, 14].
The operator A is called IBP+ELI in [14] and it shares similarities with the horizontal homotopy
operator presented in [55] (see also [5, 6]). We mention that the map A extends to the manifold
case (see [58]).

Remark 3.5 The output of A is defined up to linear combinations of exotic trees that vanish by
integration by parts. The precise description of the kernel of the integration by parts relation ∼
is an important open question for the high order integration for the invariant measure. The
first occurrence of a non-trivial element in the kernel appears for order four. Here is one such
element:

26
1 1 − 13

1 1 2 2 − 5

1

1 − 21

1 1

+ 5

1
1

− 5

1 1

+ 10

+ 13

1
1 2 2 − 13

1 2 2
1 − 10 − 5

1
1

+ 5

1
1
+ 13

1 1
2 2

∼ 0

3.2 The composition law in stochastic numerical analysis

The use of the composition rule of exotic aromatic S-series in stochastic numerical analysis first
appears in [57, 58, 53] (see also [32]), without the Hopf algebra formalism.

Proposition 3.6 (Composition of integrators) Consider two independent integrators Φ1
h

and Φ2
h with exotic S-series Sh(a1) and Sh(a2), then the composition of Φ1

h and Φ2
h has the

following S-series
E[ϕ((Φ2

h ◦ Φ1
h)(x))] = Sh(a1 ∗ a2)[ϕ](x).
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Example 3.7 Consider the explicit and implicit Euler methods in Td:

Φ1
h(x) = x+ hf(x) +

√
hξ1, Φ2

h(x) = x+ hf(Φ2(x)) +
√
hξ2,

with independent random variables ξ1, ξ2. Then, a calculation yields that the composed method Φ
has weak order 2 for solving equation (3):

E[ϕ(Φh(x))] = Sh(1+ l +
l∗2

2
+ . . . )[ϕ](x), Φh = Φ2

h/2 ◦ Φ
1
h/2.

The composed method Φ coincides in law with the stochastic trapezoidal method

Φh(x) = x+ h
f(x) + f(Φh(x))

2
+
√
hξ.

In the spirit of effective order for ODEs [18], the postprocessing idea is used in [90] for the
high-order sampling of the invariant measure of (3) in Td (or Rd). The approach with trees
was then introduced in [57, Sec. 5.3], where order conditions are presented for stochastic Runge-
Kutta methods and postprocessors. Consider an integrator Φ for the invariant measure. After
applying Φ through the entire time interval, we apply a correction Φ at the very last step. If Φ
is chosen carefully, the postprocessed integrator has a higher order than the original method Φ.
This methodology yields a costless way to improve the order of a method.

Proposition 3.8 (Postprocessed integrators) Consider an integrator with S-series Sh(a)
of order p for the invariant measure of (3), and a correction with S-series of the form

Sh(a) = 1+ hα1l + · · ·+ hp−1αp−1l
∗p−1 + . . . ,

for some constants αk ∈ R. Then, the postprocessed method has order p + 1 for the invariant
measure of (3) in Td if the following condition is satisfied:

a+ [l, a] ∼ EF∗
≥p+1, [a, b] := a ∗ b− b ∗ a.

Example 3.9 The following scheme, first introduced in [59], has weak order one and order two
for the invariant measure,

Φh(x) = x+ hf(x+

√
h

2
ξ) +

√
hξ, Φh(x) = x+

√
h

2
ξ.

Further examples can be found in [90, 1, 57].

3.3 The substitution law in stochastic numerical analysis

The main applications of the substitution law of standard B-series are backward error analysis
and modified equations for ODEs. Adapting backward error analysis and modified equations in
the stochastic context is challenging [88] and it is an active field of research [91, 2, 33, 3, 50, 51,
63, 39, 56]. It was in particular proven in [33, 3] that backward error analysis rewrites nicely
in the context of the invariant measure. We use the substitution law and the integration by
parts operation to show that the modified vector field writes as an exotic S-series, for which we
provide an explicit expression. For simplicity, we work in Td and discuss the manifold case at
the end of the subsection.
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The goal of backward error analysis is to find a modified vector field written formally as an
exotic aromatic B-series,

hf̃ = Bh(b) = hf + h2f1 + h3f2 + . . . , b : ET → R, b(•) = 1,

for some vector fields f1, f2, . . . that typically write as polynomials in the coordinates of f
and its partial derivatives, such that the invariant measure of the ergodic integrator (5) with
S-series S(a) coincides with the invariant measure of the modified dynamics:

dX̃(t) = ΠM(X̃(t))f̃(X̃(t))dt+ΠM(X̃(t)) ◦ dW (t), X̃(0) = X̃0 ∈ M. (9)

The coefficient map b is the solution to the substitution bc ⋆ e ∼ a where ⋆ is the substitution
law (see Theorem 2.8).

It is known [33, 3] that there exists a modified vector field for large classes of methods,
such as stochastic Runge-Kutta methods. The calculations are tedious and were rewritten with
exotic series in [57, 14]. There is, however, no proof that the calculations can be carried out
up to any order in these works as there is no reason in general why the modified vector field
could be written as an exotic B-series. A geometric justification of the importance of writing the
modified vector field as an exotic aromatic B-series is given in [56]: it enforces that f̃ is invariant
with respect to orthogonal changes of coordinates, which is a natural property in the stochastic
context. We provide here a simple and natural algebraic criterion, satisfied by large classes of
methods, for the description of integrators that have a modified vector field in the form of an
exotic B-series. In addition, we give the first explicit expression of the modified vector field f̃
relying on the map A defined in Proposition 3.4. This shows in particular that exotic series are
a powerful tool for the stochastic backward error analysis.

Theorem 3.10 (Backward error analysis) Consider a consistent method with the exotic
S-series Sh(a) for solving equation (3) with f = −∇V . Assume that a is a character of (EF , ·).
Then, there exists a modified vector field hf̃ = Bh(b) that can be written as an exotic B-series
with a coefficient map b : ET → R satisfying bc ⋆ e ∼ a, and given by

b = δ• +A
( ∞∑

k=0

(−1)kAk
⋆̃e(a− e)

)
|ET ,

where A⋆̃e : EF∗ → EF∗ satisfies A⋆̃e(x) = A(x)⋆̃e and

a⋆̃e = (a⊗ e) ◦ ∆̃CEM , and ∆̃CEM (π) = ∆CEM (π)− • ⊗ π − π ⊗ •,

for a ∈ EF∗, π ∈ EF such that |π| > 1.

Proof After initializing b0 = δ•, we construct recursively the coefficient map sequence (bn) by

bn = bn−1 +A(a− bn−1,c ⋆ e)|ET , bn−1,c ⋆ e = (bn−1,c ⊗ e) ◦∆CEM ,

with bn−1,c := exp⊙(bn−1) and the coproduct ∆CEM : EF → S(ET )⊗EF . Assume bn−1(•) = 1,
since A∗(•) = • − 1 1 and the method associated to a is consistent, we find

bn(•) = bn−1(•) + (a− bn−1,c ⋆ e)(• − 1 1 ) = 1 + a(•)− a( 1 1 )− e(•) + e( 1 1 ) = 1,
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thus we obtain that bn(•) = 1 for any n by induction. For all τ ∈ ET such that |τ | > 1, using
the reduced coproduct yields

bn(τ) = bn−1(τ) +A(a)(τ)− (bn−1 ⊗ e)(A∗(τ)⊗ •)
− (bn−1 ⊗ e)(• ⊗A∗(τ))−A(bn−1,c⋆̃e)(τ)

= bn−1(τ)−A(bn−1)(τ) +A(a− e− bn−1,c⋆̃e)(τ)

= A(a− e+ bn−1,c⋆̃e)(τ),

where we recall that the only exotic tree τ for which |τ | ≤ 1 is τ = • and we used A(bn−1) = bn−1.
The first values are

b1 = δ• +A(a− e)|ET ,

b2 = δ• +A(a− e)|ET −A(A(a− e)⋆̃e)|ET ,
...

bn = δ• +A
( n−1∑
k=0

(−1)kAk
⋆̃e(a− e)

)
|ET , where A⋆̃e(x) = A(x)⋆̃e.

Since |A∗(τ)|e ≤ |τ |e where |τ |e is the number of edges of τ , and ∆̃n
CEM (τ) = 0 if n ≥ |τ |e, we

have for all n ≥ |τ |e,

bn(τ) = δ• +A
( |τ |e−1∑

k=0

(−1)kAk
⋆̃e(a− e)

)
(τ),

so that the sequence (bn) converges to the desired coefficient map b by stationarity. □

Example 3.11 The first terms of the modified vector field hf̃ = Bh(b) given by Theorem 3.10
for the Euler-Maruyama method (7) are

Bh(b) = h +
h2

2
+

h2

4
1 1 − h2

2
+

h2

12
− h2

4

1 1

− h2

12

1
1
+

h2

12
1 1

+
h2

12
1 1 2 2

+ . . .

Note that removing the stochastic terms (that are, the trees with lianas) does not yield the
modified vector field for the Euler method with the standard deterministic backward error analysis
(see [41, Chap. IX]). Indeed, high order for the invariant measure does not imply high order in the
weak or strong sense [3], hence the modified equations and order conditions in the deterministic
sense or weak sense are not the same as for the invariant measure sampling, as highlighted in
the works [3, 4, 57, 58, 87].

Remark 3.12 Similarly to the deterministic context [41, Chap. IX], the properties of the scheme
are observed directly on its associated modified vector field. In particular, if hf̃ = Bh(b) with
a coefficient map b satisfying b − δ• ∼ ET ∗

>p, then the integrator has at least order p for the
invariant measure. This gives an equivalent definition of the order for the invariant measure
based on the modified vector field, as observed in [87, 4]. In particular, a method is exact for the
invariant measure if its modified vector field satisfies

div(f̃ − f) + ⟨f, f̃ − f⟩ = 0. (10)

Equation (10) is analogous to the one satisfied by the modified vector field of volume-preserving
aromatic B-series methods for ODEs, whose understanding is already an important unsolved
problem of deterministic geometric numerical integration (see, for instance, the works [27, 47,
76, 11, 12, 55]).
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Remark 3.13 Following [33], the exotic B-series hf̃ = Bh(b) translates into a formal expansion
of the invariant measure dµh = ρhdσM of the integrator by solving:

ρh = ρ∞ + hρ1 + h2ρ2 + . . . , L̃∗ρh = 0, L̃ = L+ (f̃ − f)∇.

For the first few terms, we find (see [33, 3] for the detailed expansion),

L∗ρ1 = −div(f1ρ∞), L∗ρ2 = −div(f1ρ1)− div(f2ρ∞).

Consider now a consistent exotic aromatic B-series method with S-series S(a). Similar
to backward error analysis, we are interested in finding a modified vector field hf̃ = Bh(b)
with b ∈ ET ∗ and b(•) = 1 such that bc ⋆ a ∼ δ1, that is, the integrator applied to the modified
equation (9) is exact. This technique allows in particular to increase the order of a numerical
method when the partial derivatives of f are not costly to evaluate (see, for instance, in the
deterministic setting [23, 41, 25]). A general expansion of the modified vector field is presented in
the Td case in [3, 57], but it is not an exotic B-series in general and it is not unique. Following [14],
we propose a simple criterion to obtain the existence of a modified vector field in the form of an
exotic B-series in the context of Td, for which we also provide an explicit expression.

Theorem 3.14 (Modified equations) Consider a consistent method with the exotic S-series
Sh(a) for solving equation (3) with f = −∇V . Assume that a is a character of (EF , ·). Then,
there exists a modified vector field hf̃ = Bh(b) that can be written as an exotic B-series with the
coefficient map b : ET → R satisfying b(•) = 1, bc ⋆ a ∼ δ1, and given by

b = δ• −A
( ∞∑
k=0

(−1)kAk
⋆̃a(a)

)
.

To prove Theorem 3.14, we use a similar reasoning as in Theorem 3.10.

Proof We introduce the sequence (in the spirit of the works [3, 57])

bn = bn−1 −A(bn−1,c ⋆ a), b0 = δ•.

Similarly to the proof of Theorem 3.10, we show by induction that bn(•) = 1 and we obtain
the identity bn = −A(a + bn−1,c⋆̃a) using the reduced coproduct. The sequence (bn) takes the
following first values

b1 = δ• −A(a),

b2 = δ• −A(a) +A(A(a)⋆̃a),

...

bn = δ• −A
( n−1∑
k=0

(−1)kAk
⋆̃a(a)

)
, where A⋆̃a(x) = A(x)⋆̃a,

and (bn) converges to b = δ• −A
(∑∞

k=0(−1)kAk
⋆̃a(a)

)
by stationarity. □

Any stochastic Runge-Kutta method (6) has a coefficient map that is a character, so that
Theorem 3.14 applies and there exists a modified vector field that can be written as an exotic
B-series. We refer to [57, Sec. 5.1] for examples in Td. In the manifold case, the most popular
integrators for solving constrained SDEs in the weak sense or for sampling the invariant measure
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are projection methods (see, for instance, the textbook [62, Chap. 3]). In [58], a new class of
Runge-Kutta projection methods was introduced for the high-order approximation of constrained
overdamped Langevin processes in codimension one. Theorems 3.10 and 3.14 do not extend
straightforwardly to the manifold case as there does not exist an equivalent of Proposition 3.4
with general exotic aromatic S-series. However, one can adapt the algorithm described in the
proof of Theorem 3.14, taking over the integration by parts relation ∼ described in [58]. Define
the projection operator Π: EAT → EAT by Πτ = τ − τ ▶• ( ), with ▶• the decorated
insertion product (see Section 4.3), and its dual Π∗. Define b0 = δ•. For the induction, at the
step n, if A(bn−1,c ⋆ a) is well-defined and if Π∗A(bn−1,c ⋆ a) = A(bn−1,c ⋆ a), compute

bn = bn−1 −A(bn−1,c ⋆ a).

Then, applying the integrator to the equation (9) with the modified vector field Bh,f (bn) yields
a method of order n+ 1 for the invariant measure of the original problem (3).

Example 3.15 For the sake of simplicity, we consider the unit sphere M = {x ∈ Rd, |x|2 = 1},
with n(x) = x. The constrained Euler scheme with implicit projection direction:

Xn+1 = Xn + hf(Xn+1) +
√
hξn + λnXn+1, |Xn+1| = 1.

has order 2 for sampling the invariant measure of (3) when applied to the modified equation (9)
with the modified vector field

f̃ = f + h

[
− 1

2
f ′f − 1

4
∆f +

3

4
f − 1

4
div(n)f − 1

2
⟨n, f⟩f − 1

4
f ′n

− 1

4
div(n)f ′n− 1

2
⟨n, f⟩f ′n− 1

4
f ′′(n, n) +

1

2
⟨n, f⟩⟨n, f ′n⟩n

+
1

4
⟨n, f ′′(n, n)⟩n− 1

4
div(f)′nn− 1

2
⟨n, f ′f⟩n+

1

4
⟨n, f ′n⟩n

+
1

4
div(n)(n, f ′n⟩n+

1

2
⟨n, f⟩2n− 3

4
⟨n, f⟩n+

1

4
div(n)⟨n, f⟩n

]
.

4 Algebraic structure of decorated and exotic aromatic forests

This section is devoted to a detailed study of the algebraic structures of decorated aromatic and
exotic aromatic forests, which are used to describe the corresponding substitution laws presented
in Theorems 2.8 and 4.19. Section 4.1 defines a free D-algebra [77] over decorated aromatic
forests and describes the corresponding Grossman-Larson Hopf algebroid and pre-Hopf algebroid,
generalizing the Grossman-Larson Hopf algebra and pre-Hopf algebra [64] structures. The
Grossman-Larson Hopf algebroid is closely related to the composition of differential operators
and, consequently, to the composition law of S-series.

Section 4.2 focuses on the algebraic structure of decorated clumped forests as well as the
relation between clumped and aromatic forests. The introduction of decorated clumped forests
is necessary due to the fact that the substitution law is described using a homomorphism with
respect to a product which is not AD-bilinear, and therefore, we need to attach aromas to rooted
components. Section 4.3 introduces the substitution law for decorated aromatic forests, while
Section 4.4 details the algebraic results presented in this section in the context of exotic aromatic
forests.
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4.1 D-algebra of decorated aromatic forests

In this section, we introduce algebraic structures over decorated aromatic forests that are relevant
in our description of the substitution law. Let ↷ : AT D ⊗ AT D → AT D denote the grafting
product over decorated aromatic trees. The grafting product τ ↷ γ is the sum over all ways to
attach the root of τ to a vertex of γ, for example,

↷ = 2 + .

Divergence of an aromatic tree is defined to be a map d : AT D → AD such that d(τ) is a sum
over all ways to attach the root of τ to one of its vertices, for example,

d( ) = + + 2 .

Let ElAD
(AT D) be the algebra of endomorphisms − ↷ τ : AT D → AT D. The pair (AT D,AD)

is the tracial pre-Lie-Rinehart algebra generated by the set D, that is, it satisfies the following
properties:

1. AD is a unital commutative algebra with concatenation product · : AD ⊗AD → AD,

2. AT D is an AD-module with a pre-Lie product ↷ : AT D ⊗AT D → AT D, that is,

τ ↷ (γ ↷ ν)− (τ ↷ γ) ↷ ν = γ ↷ (τ ↷ ν)− (γ ↷ τ) ↷ ν,

for τ, γ ∈ AT D, ν ∈ AT D ⊔ AD,

3. for any τ ∈ AT D, the map τ ↷ − : AD → AD is a derivation and the Leibniz rule holds,

τ ↷ (ω · ν) = (τ ↷ ω) · ν + ω · (τ ↷ ν),

for ω ∈ AD and ν ∈ AD ⊔ AT D.

4. there exists a map t : ElAD
(AT D) → AD called a trace that satisfies t(τ ↷ γ̃) = τ ↷ t(γ̃)

and t(τ̃ ◦ γ̃) = t(γ̃ ◦ τ̃) with τ ∈ AT D, τ̃ , γ̃ ∈ ElAD
(AT D) and ◦ the composition of

endomorphisms. The divergence is then defined as d(τ) := t(− ↷ τ).

More details can be found in [36] where it is proven that (AT D,AD) is a free tracial pre-Lie-
Rinehart algebra. We extend the structure of the tracial pre-Lie-Rinehart algebra by considering
a symmetric AD-bilinear form ⟨−,−⟩ : AT D ⊗AT D → AD with the Leibniz rule:

τ ↷ ⟨γ, ν⟩ = ⟨τ ↷ γ, ν⟩+ ⟨γ, τ ↷ ν⟩, for τ, γ, ν ∈ AT D.

The aroma ⟨γ, ν⟩ ∈ AD is called a stolon and is denoted by a horizontal double edge that
connects the roots of the corresponding trees, for example, ⟨ , ⟩ = .

Proposition 4.1 The tracial stolonic pre-Lie-Rinehart algebra (AT D,AD) is free.

The classical Guin-Oudom process [79] extends uniquely a pre-Lie product over a vector
space V to a product over the symmetric algebra S(V ). We generalize and use this process
to extend uniquely the pre-Lie-Rinehart product ↷ over a AD-module AT D to the symmetric
algebra AFD := SAD

(AT D) of decorated aromatic forests.
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Proposition 4.2 There exists a unique extension of the ↷ product to AFD such that

(i) ω1 ↷ ν = ων, for ω ∈ AD, ν ∈ AD ⊔ AT D,

(ii) (τ · π) ↷ ν = τ ↷ (π ↷ ν)− (τ ↷ π) ↷ ν, for τ ∈ AT D, π ∈ AFD,

(iii) π ↷ (µ1 · µ2) =
∑

(π)(π(1) ↷ µ1) · (π(2) ↷ µ2), for µ1, µ2 ∈ AFD,

with deshuffle coproduct ∆AD
(π) =

∑
(π) π(1) ⊗AD

π(2).

We follow the structure of the proof of Proposition 2.7 of [79] which proves an analogous
statement for S(AT D). We check that the relations (i), (ii), (iii) are well-defined over SAD

(AT D).

Proof It follows from (i), (iii), and the coassociativity of ∆AD
that

τ ↷ 1 = 0, and τ ↷ (π1 · · ·πn) =
n∑

k=1

π1 · · · (τ ↷ πk) · · ·πn.

The relation (ii) is well-defined with respect to the choice of τ using the Lemma 2.5 of [79]
which is based on induction on the length of the monomial and the pre-Lie relation. This means
that (τ · π) ↷ ν is well-defined for τ · π ∈ S(AT D) using (i) and (ii). Let J be an ideal
of S(AT D)

J := ⟨(ωτ · γ − τ · ωγ) · π : ω ∈ AD, τ, γ ∈ AT D, π ∈ S(AT D)⟩.

It remains to show that J ↷ ν = 0 which follows from the property (ωτ ·π) ↷ ν = ω(τ ·π ↷ ν),
with ω ∈ AD, proved by induction on the length of the monomial π. The initial step is shown
below for γ ∈ AT D using the AD-linearity in the left operand of ↷:

(ωτ · γ) ↷ ν = ωτ ↷ (γ ↷ ν)− (ωτ ↷ γ) ↷ ν = ω(τ · γ ↷ ν).

Assume the property to be true for monomials shorter than π = τ1 · · · τn ∈ S(AT D) and recall
that

ωτ ↷ π =
n∑

k=1

ω(τ ↷ τk) · πk̂, where πk̂ := τ1 · · · τk−1τk+1 · · · τn.

Then, by induction, we have,

(ωτ ↷ π) ↷ ν =
( n∑
k=1

ω(τ ↷ τk) · πk̂
)
↷ ν

= ω
( n∑
k=1

(τ ↷ τk) · πk̂
)
↷ ν

= ω((τ ↷ π) ↷ ν).

This allows us to prove the inductive step:

(ωτ · π) ↷ ν = ωτ ↷ (π ↷ ν)− (ωτ ↷ π) ↷ ν = ω(τ · π ↷ ν).

Therefore, relations (i) and (ii) extend ↷ to SAD
(AT D)⊗(AD⊕AT D) → (AD⊕AT D). Due to

the Leibniz rule, the property (ωπ) ↷ ν = ω(π ↷ ν), the cocommutativity and coassociativity
of ∆AD

, the relation (iii) is well-defined. Therefore, it defines ↷ on AFD = SAD
(AT D). □
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Following the D-algebra structure from [77], see also [68, 69, 70], we define the tracial
commutative D-algebra (AFD,↷) of decorated aromatic forests graded by the number of roots.

Definition 4.3 Let (A, ·) be a unital commutative graded algebra with unit 1. Let A be equipped
with a non-associative product ↷ and let x ∈ A1 and a, b ∈ A satisfy the relation

x ↷ (a · b) = (x ↷ a) · b+ a · (x ↷ b).

The triple (A, ·,↷) is a commutative D-algebra if the following identities are satisfied

1 ↷ a = a,

a ↷ x ∈ A1,

(ω · a) ↷ b = ω · (a ↷ b),

(x · a) ↷ b = x ↷ (a ↷ b)− (x ↷ a) ↷ b,

for ω ∈ A0, x ∈ A1, a, b ∈ A. It is called tracial if there exists a trace t : ElA0(A1) → A0.

For a tracial commutative D-algebra A, the pair (A1, A0) is a tracial pre-Lie-Rinehart algebra.
This implies that (AFD,↷) is the free tracial commutative D-algebra since (AT D,AD) is the
free tracial pre-Lie-Rinehart algebra and (AFD,↷) is obtained uniquely using the Guin-Oudom
process (Proposition 4.2). We extend the structure of the D-algebra (AFD,↷) with the AD-
bilinear form ⟨−,−⟩ : AT D ⊗AT D → AD and see that it remains free.

A map φ : A → A′ between two tracial commutative D-algebras A and A′ is a D-algebra
morphism if φ(A1) ⊂ A′

1 and

φ(a · b) = φ(a) · φ(b), φ(a ↷ b) = φ(a) ↷ φ(b),

φ(⟨x, y⟩) = ⟨φ(x), φ(y)⟩, φ(t(x̃)) = t(φ(x̃)),

for a, b ∈ A, x, y ∈ A1, x̃ ∈ ElA0(A1).

Example 4.4 Let X be the space of vector fields Rd → Rd. The symmetric algebra SC∞(Rd)(X )

over the ring of C∞(Rd) maps is a commutative tracial D-algebra and represents the space of
differential operators in Rd. The non-associative product is given by the covariant derivation,
for example, let f, g, h : Rd → Rd, then,

(fg)[h] =

d∑
i,j=1

f igjhij , where hij :=
∂2h

∂xi∂xj
.

Divergence of a vector field is d(f) =
∑d

i=1 f
i
i and the bilinear product is the inner product,

i.e., ⟨f, g⟩ =
∑d

i=1 f
igi.

We note that the algebra of endomorphisms generated by π ↷ − : AFD → AFD for
π ∈ AFD is isomorphic to the algebra (AFD, ⋄) with ⋄ denoting the Grossman-Larson product
defined as

π1 ↷ (π2 ↷ −) = (π1 ⋄ π2) ↷ −, π1, π2 ∈ AFD.

Let us obtain a Grossman-Larson A/R-bialgebra [75] from the commutative D-algebra AFD.
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Proposition 4.5 Let ϵAD
: AFD → AD be a AD-linear map such that ϵAD

(1) = 1 and
ϵAD

(π) = 0 for π /∈ AFD,0, then BGL := (AFD, ⋄,1,∆AD
, ϵAD

) is a A/R-bialgebra [75] called
Grossman-Larson A/R-bialgebra. That is, it satisfies the following properties:

(1) ϵAD
(1) = 1,

(2) ∆AD
(1) = 1⊗AD

1,

(3) ϵAD
(π ⋄ µ) = ϵAD

(π ⋄ ϵAD
(µ)),

(4) ∆AD
(π ⋄ µ) = ∆AD

(π) ⋄⊗ ∆AD
(µ),

with (π(1) ⊗AD
π(2)) ⋄⊗ (µ(1) ⊗AD

µ(2)) = (π(1) ⋄ µ(1))⊗AD
(π(2) ⋄ µ(2)) .

Proof Since Grossman-Larson product is isomorphic to the composition of maps, it is associative.
The properties (1) and (2) follow from the definition of the counit and coproduct. Property (4)
can be proven using the definition of the Grossman-Larson product together with the relation (iii)
from Proposition 4.2. To prove the property (3), we note that ϵAD

(π1 ⋄ π2) is non-zero if and
only if π2 ∈ AD and is equal to the aromas obtained by grafting all trees of π1 onto π2 in all
possible ways. □

Proposition 4.5 can be applied to a general commutative D-algebra if the associativity of
the Grossman-Larson product is proven analogously to [79, Lemma 2.10]. We note that if
we exclude all aromas, i.e. AD = {1}, the A/R-bialgebra BGL becomes a graded connected
bialgebra which is also a Hopf algebra. We also note that the product ⋄⊗ is well-defined over
∆AD

(AFD) ⊂ AFD ⊗AD
AFD, but not over AFD ⊗AD

AFD since ⋄ is not AD-linear in its
right operand.

Remark 4.6 We say that BGL is cocomplete since BGL =
⋃∞

n=0BGL,n and is a free AD-module.
An analog of the Cartier-Milnor-Moore theorem is proven in [75] which states that a cocomplete
and graded projective A/R-bialgebra is the universal enveloping Lie-Rinehart algebra of the Lie-
Rinehart algebra of its primitive elements. The freeness of the AD-module BGL implies its
graded projectiveness, therefore, the A/R-bialgebra BGL is the universal enveloping Lie-Rinehart
algebra of the pre-Lie-Rinehart algebra (AT D,AD).

Remark 4.7 If we replace the coalgebra structure of BGL by the deshuffle coproduct ∆ : AFD →
AFD ⊗AFD and ϵ : AFD → R, then we get a Grossman-Larson Hopf algebra dual (up to the
symmetry coefficients) to the Hopf algebra mentioned in [11, Thm. 4.4].

A/R-bialgebras are also called cocommutative bialgebroids. We show that BGL defines a
Hopf algebroid as introduced in [67].

Proposition 4.8 Let S⋄ : (AFD, ⋄) → (AFD, ⋄) be the algebra anti-isomorphism defined as

(i) S⋄(ω) := ω, S⋄(ωπ) := S⋄(π) ⋄ ω, for ω ∈ AD, π ∈ AFD,

(ii) S⋄(τ) := −τ, S⋄(τπ) := −S⋄(π) ⋄ τ − S⋄(τ ↷ π), for τ ∈ TD.

Then, HGL := (BGL, S⋄) is the Grossman-Larson Hopf algebroid with S⋄ being called an antipode
and satisfying the following conditions where π ∈ AFD and ∆AD

(π) =
∑

(π) π(1) ⊗AD
π(2),

(1)
∑

(π) S⋄(π(1)) ⋄ π(2) = 1ϵAD
(S⋄(π)),

(2)
∑

(π) π̂(1) ⋄ S⋄(π̂(2)) = 1ϵAD
(π), with γ(π(1) ⊗AD

π(2)) = π̂(1) ⊗ π̂(2),

where γ is the section of the projection P : AFD ⊗ AFD → AFD ⊗AD
AFD that places all

aromas on the left side of the tensor product, that is, π̂(2) has no aromas.
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Proof It can be seen that S⋄ defined this way is an anti-isomorphism due to the associativity
of the Grossman-Larson product and the definition which can be rewritten as

S⋄(ω ⋄ π) = S⋄(π) ⋄ S⋄(ω), S⋄(τ ⋄ π) = S⋄(π) ⋄ S⋄(τ).

Let us prove that S⋄ satisfies the condition (1) and (2). We start with (1) by noting that the
operation S⋄(−) ⋄ − : AFD ⊗AD

AFD → AFD is well-defined since

S⋄(ωπ(1)) ⋄ π(2) = S⋄(π(1)) ⋄ ω ⋄ π(2) = S⋄(π(1)) ⋄ ωπ(2).

We see that (1) is satisfied for π = ω ∈ AD. Let us check that (1) is satisfied for π = ωτ ∈ AT D:

S⋄(τ) ⋄ ω + S⋄(1) ⋄ ωτ = −τω − τ ↷ ω + ωτ = S⋄(τ) ↷ ω = 1ϵAD
(S⋄(ωτ)),

where τ ∈ TD. Let τ ∈ TD, π ∈ FD, ω ∈ AD, then, τπω = τ ⋄ πω − τ ↷ πω. We use induction
on the length of π and assume that the condition (1) is satisfied for τ ↷ πω. We check that the
left-hand side of (1) applied to τ ⋄ πω is 0:∑

(τ⋄πω)

S⋄((τ ⋄ πω)(1)) ⋄ (τ ⋄ πω)(2) =
∑

(τ),(πω)

S⋄(τ(1) ⋄ π(1)) ⋄ τ(2) ⋄ π(2)ω

=
∑
(πω)

S⋄(π(1)) ⋄
(∑

(τ)

S⋄(τ(1)) ⋄ τ(2)
)
⋄ π(2)ω = 0,

since
∑

(τ) S⋄(τ(1)) ⋄ τ(2) = 0. This implies that left-hand side of (1) applied to τπω is∑
(τπω)

S⋄((τπω)(1)) ⋄ (τπω)(2) = −1ϵAD
(S⋄(τ ↷ πω))

= 1ϵAD
(S⋄(τπω)) + 1ϵAD

(S⋄(πω) ⋄ τ)
= 1ϵAD

(S⋄(τπω)).

This proves that S⋄ satisfies the condition (1). To prove condition (2), we recall that the
Grossman-Larson product is AD-linear in its left operand and that γ places all aromas on the
left side of the tensor product. This implies that both sides of the condition (2) are AD-linear
and the condition is reduced to the analogous condition over the Grossman-Larson Hopf algebra
over FD. This proves that S⋄ satisfies the condition (2). □

The space of decorated aromatic forests with commutative product · and deshuffle coproduct
forms a Hopf algebra H := (AFD, ·,1,∆AD

, ϵAD
, S). The Hopf algebra H together with the

product ↷: H ⊗H → H forms a pre-Hopf algebroid which is a generalization of the pre-Hopf
algebra [64] that satisfies the following conditions for π, µ, η ∈ H, a map β : H → H, and a
section γ of the projection P : H ⊗H → H ⊗AD

H with γ(π(1) ⊗AD
π(2)) = π̂(1) ⊗ π̂(2):

(1) π ↷ (µ · η) = (π(1) ↷ µ) · (π(2) ↷ η),

(2) π ↷ (µ ↷ η) = (π(1) · (π(2) ↷ µ)) ↷ η,

(3) π̂(1) ↷ (β(π̂(2)) ↷ −) = ϵAD
(π) id,

(4) β(π(1)) ↷ (π(2) ↷ −) = ϵAD
(β(π)) id.
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Conditions (1) and (2) follow from the definition of the D-algebra and the conditions (3) and (4)
are satisfied for β and γ being the anitipode S⋄ and γ from Proposition 4.8. We present an
alternative proof for (8) of [64, Lemma 2.3].

Lemma 4.9 For all π, µ ∈ H, we have π ↷ S(µ) = S(π ↷ µ).

Proof Consider µ = τ ∈ AT D, then π ↷ τ ∈ AT D and π ↷ S(τ) = −π ↷ τ = S(π ↷ τ).
Assume the statement is true for all monomials shorter than µ = τ1 · · · τn for τi ∈ AT D, then,

S(π ↷ τ1 · · · τn) = −
∑
(π)

(π(1) ↷ τ1)S(π(2) ↷ τ2 · · · τn)

= −
∑
(π)

(π(1) ↷ τ1)(π(2) ↷ S(τ2 · · · τn))

= −π ↷ (τ1S(τ2 · · · τn)) = π ↷ S(µ).

This finishes the proof. □

We check that the subadjacent Hopf algebra with antipode Ŝ⋄ defined in [64, Thm. 2.4]
corresponds to the Grossman-Larson Hopf algebroid by showing that the antipodes coincide.

Lemma 4.10 Let Ŝ⋄ be the antipode defined in [64, Thm. 2.4], that is,

Ŝ⋄(π) :=
∑
(π)

Ŝ⋄(π(1)) ↷ S(π(2)), for π ∈ H.

Then, Ŝ⋄ = S⋄ where S⋄ is defined in Proposition 4.8.

Proof We see that Ŝ⋄(ω) = ω and Ŝ⋄(τ) = −τ for ω ∈ AD and τ ∈ TD. We check by induction
and using the fact that S⋄ is a coalgebra homomorphism that Ŝ⋄(ωπ) = S⋄(ωπ) for π ∈ AFD:

Ŝ⋄(ωπ) =
∑
(π)

S⋄(π(1)) ↷ S(ωπ(2)) =
∑
(π)2

(S⋄(π(1)) ↷ ω)(S⋄(π(2)) ↷ S(π(3)))

=
∑
(π)

(S⋄(π(1)) ↷ ω)S⋄(π(2)) = S⋄(π) ⋄ ω.

We use the same properties to show that Ŝ⋄(τπ) = S⋄(τπ):

Ŝ⋄(τπ) = S⋄(π(1)) ↷ S(τπ(2)) + S⋄(τπ(1)) ↷ S(π(2))

= −S⋄(π(1)) ↷ τS(π(2))− (S⋄(π(1)) ⋄ τ) ↷ S(π(2))− S⋄(τ ↷ π(1)) ↷ S(π(2))

= −S⋄(π) ⋄ τ − S⋄(π(1)) ↷ S(τ ↷ π(2))− S⋄(τ ↷ π(1)) ↷ S(π(2))

= −S⋄(π) ⋄ τ − S⋄(τ ↷ π),

where we omit writting the sums to simplify the notation. Therefore, Ŝ⋄ = S⋄ following the
definition from Proposition 4.8. □

Following [7, Def. 1.1], the Hopf algebra H together with the Hopf algebroid HGL forms a
generalization of the Hopf brace, that is, the following compatibility condition is satisfied

π ⋄ (µ · η) =
∑
(π)2

(π(1) ⋄ µ) · S(π(2)) · (π(3) ⋄ η),

with π, µ, η ∈ AFD and ∆2(π) =
∑

(π)2 π(1)⊗π(2)⊗π(3). A proof can be found in [64, Thm. 2.13].
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4.2 Decorated clumped forests

Recall that decorated clumped forests are defined as a symmetric algebra CFD = S(AT D)
over R in Section 2. We use the Guin-Oudom process [79] to define the product ↷ on CFD.
The commutative D-algebra (CFD,↷) that we obtain in this way has CFD,0 = {1} and is
in many ways similar to the commutative D-algebra of classical forests (FD,↷). Decorated
clumped forests have a convenient algebraic structure described in the following result.

Theorem 4.11 The Grossman-Larson A/R-bialgebroid of (CFD,↷) is a Hopf algebra dual up
to the symmetry to the Butcher-Connes-Kreimer Hopf algebra over clumped forests.

Proof As CFD,0 = {1}, the A/R-bialgebroid structure reduces to a graded connected bialgebra,
that is, to a Hopf algebra. Its duality to the corresponding Butcher-Connes-Kreimer Hopf algebra
over clumped forests can be seen by following the proof for classical forests from [45]. □

Let us consider the following inner product for π, µ ∈ CFD or AFD:

⟨π, µ⟩σ :=

{
σ(π), if π = µ,

0, otherwise.

We use it to obtain the following duality between concatenation product and deshuffle coproduct.

Lemma 4.12 Let · be the concatenation product and let a, b ∈ CF∗
D or AF∗

D, then,

δσ(a) · δσ(b) = δσ(a⊙ b), where a⊙ b = (a⊗ b) ◦∆,

where ∆ : CFD → CFD⊗CFD or ∆ : AFD → AFD⊗AFD is the R-linear deshuffle coproduct.

Proof We check that ⟨π · µ, η⟩σ = ⟨π ⊗ µ,∆(η)⟩σ for π, µ, η ∈ CFD or AFD. □

Let the map Φ : (CFD,↷) → (AFD,↷) be a commutative D-algebra morphism that
”forgets” the clumping, for example,

Φ( · ) = Φ( · ) = .

We define Φ∗ : AFD → CFD as (Φ ◦ δσ)(a) = δσ(a ◦ Φ∗) with a ∈ CF∗
D, in particular, Φ∗ is the

adjoint of Φ with respect to the ⟨−,−⟩σ inner product. Let us consider the exponential maps

exp· : AT D → AFD, exp⊙ : AT ∗
D → AF∗

D,

exp·C : AT D → CFD, exp⊙C : AT ∗
D → CF∗

D.

Using Lemma 4.12, we obtain for a0 ∈ AT ∗
D the following identities

exp·(δσ(a0)) = δσ(exp
⊙(a0)), exp·C(δσ(a0)) = δσ(exp

⊙
C(a0)),

with the functionals exp⊙(a0) and exp⊙C(a0) being characterized in Propositon 4.13.

Proposition 4.13 Let a0 ∈ AT ∗ be an infinitisimal character and let

ae := exp⊙(a0), ac := exp⊙C(a0).

Then, ac ∈ CF∗
D is a character of (CFD, ·) and ae = ac ◦ Φ∗ with ae ∈ AF∗

D.
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Proof We prove that ac := exp⊙C(a0) is a character of CFD by considering a decorated clumped
forest π = τ1 · · · τn ∈ CFD where τi ∈ AT D. Then,

exp⊙C(a0)(π) =
1

n!
· (a0 ⊗ · · · ⊗ a0)(∆

n−1(π))

=
1

n!
·
∑
σ∈Sn

a0(τσ(1)) · · · a0(τσ(n)) = a0(τ1) · · · a0(τn).

We prove ae = ac ◦ Φ∗ by using the identity exp·(δσ(a0)) = Φ
(
exp·C(δσ(a0))

)
. □

We define FD from Section 2.1 over CFD by FD := FD◦Φ where we use the same notation for
the morphism over clumped and aromatic forests. This way, we obtain S-series over decorated
clumped forests. We note that, following the definition of Φ∗, any S-series S(a) with a ∈ CF∗

D

is identical to the S-series over decorated aromatic forests S(a ◦ Φ∗). Moreover, given any
functional a ∈ AF∗

D, there exists a functional aC ∈ CF∗
D such that a = aC ◦ Φ∗, since Φ∗ is

injective. A possible definition of aC is

aC(π) =
1

nm
a(Φ(π)), for π ∈ CFD,

where n is the number of rooted components and m is the number of aromas.
We note that a tree τ ∈ TD induces a map τ ′ : AD → AT D with τ ′(ω) = ωτ for ω ∈ AD.

We can extend (−)′ to FD in two possible ways, that is, for a π ∈ FD, we have two maps,

π′ : AD → AFD, π′′ : AD → CFD,

defined as
(π · µ)′(ω) = ωπµ, (π · µ)′′(ω) = (π′′ ⊙ µ′′)(ω),

with π′′ ⊙ µ′′ := · ◦ (π′′ ⊗ µ′′) ◦∆ where ∆ is a deshuffle coproduct over AD. For example,

( )′( ) = , ( )′′( ) = · + · .

The following result presents a convenient method to compute Φ∗.

Proposition 4.14 Given a decorated forest π ∈ FD and ω ∈ AD, we have the following identity

Φ∗(π′(ω)) = π′′(ω).

Proof We take the adjoints of π′ and π′′ with respect to the ⟨−,−⟩σ inner product and denote
them by π′∗ : AFD → AD and π′′∗ : CFD → AD. Then, π′∗(ωπ) = σ(π)ω where ω ∈ AD and
π ∈ FD. To prove the statement, we have to show that π′′∗(πω) = σ(π)ω where πω ∈ CFD

is a decorated clumped forest that occurs as a term in π′′(ω), that is, we need to show that
π′∗(Φ(πω)) = π′′∗(πω).

We note that for τ ∈ TD, τ ′′∗(ω) = τ ′∗(ω) = σ(τ)ω and the statement is true. We use an
inductive assumption and Lemma 4.12 to obtain

(π · µ)′′∗(ηω) = (· ◦ (π′′∗ ⊗ µ′′∗) ◦∆)(ηω) = σ(π)σ(µ)|A|ω,

where A is the set of ηω,(1) ⊗ ηω,(2) such that the rooted components of ηω,(1) and ηω,(2) are
isomorphic to π and µ, respectively. We note that σ(π)σ(µ)|A| = σ(π · µ) and the proof is
finished. □
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For example, let ∈ AFD, then,

Φ∗( ) = · + · + · + · .

We note that Propositions 4.13 and 4.14 imply the following identity

ae(ωπ) = ac(π
′′(ω)), for π ∈ FD, ω ∈ AD,

a version of which is presented in [11] for classical aromatic forests.

4.3 Substitution law for decorated aromatic S-series

We introduce the decorated insertion product ▶d: AT D ⊗ AT D → AT D which inserts the
aromatic tree from the left operand into the vertices decorated by d ∈ D of the right operand

in all possible ways. For example, we recall that = div(◦)(◦ ↷ ◦) ↷ •, then,

▶◦ = div( )(◦ ↷ ◦) ↷ •+ div(◦)( ↷ ◦) ↷ •+ div(◦)(◦ ↷ ) ↷ •

= + + + + + + .

The product ▶d generalizes the insertion product studied in [85, 71, 86]. Then, the family
(AT D, (▶d)d∈D) is a multi-pre-Lie algebra [15, 37], that is, for τ, γ, ν ∈ AT D and d, e ∈ D we
have

τ ▶d (γ ▶e ν)− (τ ▶d γ) ▶e ν = γ ▶e (τ ▶d ν)− (γ ▶e τ) ▶d ν.

Let AT ⊕D
D := AT D ⊗ R[D] =

⊕
d∈D AT Dιd where ιd for d ∈ D form the basis of R[D] and

let us define the action ▶: AT ⊕D
D ⊗AT D → AT D by

τιd ▶ γ = τ ▶d γ.

Let us consider S(AT ⊕D
D ) which becomes CF⊗D

D :=
⊗

d∈D CFDιd after we assume the identity
πιd · µιd = (π · µ)ιd. We check that the Guin-Oudom process for multi-pre-Lie products [37,
Thm. 2.4] is well-defined and use it to define

▶: CF⊗D
D ⊗ CFD → CFD.

For example, let D := {•, ◦}, then, ( ι◦) · ( ι•) ▶ = 2 + 4 + 2 . We note that
for π, µ ∈ CFD, we have πιd ▶ µ = 0 if the number |π|AT of aromatic trees in π is greater
than the number |µ|d of vertices decorated by d in µ. We define now the substitution action
▷ : CF⊗D

D ⊗ CFD → CFD in the following way

(⊗d∈Dπdιd) ▷ µ :=

{
(⊗d∈Dπdιd) ▶ µ, if |πd|AT = |µ|d for all d ∈ D,

0, otherwise.

The substitution action substitutes all vertices in the right operand by the aromatic trees from
the left operand. We recall that CFD is a free D-algebra generated by the set D, therefore, given
a map φ : D → AT D, there exists a unique morphism Aφ : CFD → CFD. The morphism Aφ

can be written using the substitution action.
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Lemma 4.15 Given a morphism Aφ : CFD → CFD that acts on generators D as φ, we have

Aφ(π) = ⊗d∈D exp·C(φ(d)ιd) ▷ π.

Proof Assume φ(d) = τd ∈ AT D, then,

⊗d∈D exp·C(τdιd) ▷ π =
1∏

d∈D |π|d!
(⊗d∈Dτ

|π|d
d ιd) ▶ π = Aφ(π),

where we use the definition of ▶. □

Let a⊗D := ⊗d∈Dadιd with ad ∈ CF∗
D be a functional over CF⊗D

D defined as

a⊗D(⊗d∈Dπdιd) =
∏
d∈D

ad(πd).

For example, let D = {•, ◦}, then, (aι•bι◦)
(

ι• · ι◦
)
= a( )b( ). We define a coaction

∆CEM : CFD → CF⊗D
D ⊗ CFD and show in Proposition 4.17 that it is dual to the substitution

action up to the symmetry coefficient, that is, we have

δσ(b
⊗D ⋆ a) = δσ(b

⊗D) ▷ δσ(a) where b⊗D ⋆ a = (b⊗D ⊗ a) ◦∆CEM ,

for a ∈ CF∗
D, b

⊗D ∈ CF⊗D∗
D , and where we denote σ⊗D by σ for simplicity. The coaction ∆CEM

is a generalization of the Calaque–Ebrahimi-Fard–Manchon (CEM) coproduct from [22].

Definition 4.16 Define the CEM coaction ∆CEM : CFD → CF⊗D
D ⊗ CFD as

∆CEM (π) =
∑

⊗d∈Dpdιd

(⊗d∈Dpdιd)⊗ π/⊗d∈Dpdιd , for π ∈ CFD,

where the sum is over all monomials of disjoint decorated clumped subforests pdιd that partition π,
and π/⊗d∈Dpdιd denotes the decorated clumped forest obtained by contracting the decorated aromatic
trees of pdιd into vertices decorated by d.

For example, let D = {•, ◦}, then,

∆CEM ( ) = ι• ⊗ + ι◦ ⊗ ,

∆CEM ( ) = ι• ⊗ + ι◦ ⊗ + ι• ⊗ + ι◦ ⊗
ι• · ι◦ ⊗ + ι◦ · ι• ⊗ ,

∆CEM ( ) = ι• ⊗ + ι• ⊗ + ι• ⊗ + ι• ⊗ +

ι◦ ⊗ + ι◦ ⊗ + ι◦ ⊗ + ι◦ ⊗ +

ι• · ι◦ ⊗ + ι◦ · ι• ⊗ + ι• · ι◦ ⊗ + ι◦ · ι• ⊗ +

ι◦ · ι• ⊗ + ι◦ · ι• ⊗ + ι• · ι◦ ⊗ +

ι• · ι◦ ⊗ + ι• · ι◦ ⊗ + ι◦ · ι• ⊗ .

Proposition 4.17 Let a ∈ CF∗
D, b

⊗D ∈ CF⊗D∗
D , and b⊗D ⋆ a = (b⊗D ⊗ a) ◦∆CEM , then,

δσ(b
⊗D ⋆ a) = δσ(b

⊗D) ▷ δσ(a).
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Proof We prove the statement in two steps. First, we prove the statement over the space of
ordered clumped forests. Ordered clumped forest are forests in which all vertices are totally
ordered. Next, we describe the relationships between the product and coproduct over ordered
and non-ordered clumped forests and use them to finish the proof.

1. The space CFDO is defined by assigning every decorated clumped forest π a total order
over the vertices. We note that a forest π ∈ CFD corresponds to |π|! ordered forests in CFDO.
The symmetry of any element of CFDO is equal to 1. Let CF⊗D

DO :=
⊗

d∈D CFDOιd.

We define ▷O : CF⊗D
DO⊗CFD → CFDO and ∆O

CEM : CFDO → CF⊗D
DO⊗CFD to be the natural

extensions of ▷ and ∆CEM . The map ▷O substitutes the vertices decorated by d by the trees
of πdιd and chooses a total order between the vertices of πd and πl with d ̸= l in all possible
ways. We note that there are

(∑
d∈D |πd|

)
!/
∏

d∈D |πd|! ways to choose a total order between

the vertices of πd and πl with d ̸= l. Let π ∈ CF⊗D
DO and µ ∈ CFD, then,

π ▷O µ =
∑

η∈CFDO

N(π, µ, η)η,

where N(π, µ, η) is the number of ways to substitute the vertices of µ by trees in π to obtain η.
We note that there are |Aut(µ)| ways to substitute the vertices of µ to obtain the same ordered
forest η, therefore, N(π, µ, η) = σ(µ). The symmetry is 1 for an ordered clumped forest, and,
since all terms in ∆O

CEM (π) have coefficient 1, we obtain

δOσ (b
⊗D) ▷O δσ(a) = δOσ (b

⊗D ⋆O a), where b⊗D ⋆O a = (b⊗D ⊗ a) ◦∆O
CEM ,

for b⊗D ∈ CF⊗D∗
DO and a ∈ CF∗

D. The image of δOσ is a formal sum over ordered clumped forests.
2. We define the map φ that forgets the ordering of the vertices and let

φ̂(π) :=
φ(π)

|π|!
, φ⊗D(⊗d∈Dπdιd) = ⊗d∈Dφ(πd)ιd,

where φ, φ̂ : CFDO → CFD and φ⊗D, φ̂⊗D : CF⊗D
DO → CF⊗D

D . We have the following properties

φ̂ ◦ ▷O = ▷ ◦ (φ̂⊗D ⊗ id), (φ⊗D ⊗ id) ◦∆O
CEM = ∆CEM ◦ φ.

We also note that for a functional b⊗D ∈ CF⊗D∗
D , δσ(b

⊗D) = φ̂⊗D(δOσ (b
⊗D ◦ φ⊗D)), therefore,

δσ(b
⊗D) ▷ δσ(a) = φ̂⊗D

(
δOσ (b

⊗D ◦ φ⊗D)
)
▷ δσ(a)

= φ̂
(
δOσ (b

⊗D ◦ φ⊗D) ▷O δσ(a)
)

= φ̂
(
δOσ ((b

⊗D ◦ φ⊗D) ⋆O a)
)

= φ̂
(
δOσ ((b

⊗D ⋆ a) ◦ φ)
)
= δσ(b

⊗D ⋆ a).

This proves that δσ is an algebra morphism. □

We now extend the insertion action ▶: AT ⊕D
D ⊗ AT D → AT D into the insertion product

▶: AT ⊕D
D ⊗AT ⊕D

D → AT ⊕D
D by

τιd ▶ γιl = (τ ▶d γ)ιl.

We recall that CF⊗D
D = S(AT ⊕D

D ) which allows us to use the Guin-Oudom process and define
▶: CF⊗D

D ⊗ CF⊗D
D → CF⊗D

D and the substitution product ▷ : CF⊗D
D ⊗ CF⊗D

D → CF⊗D
D . The

algebra (CF⊗D
D , ▷) is endowed with the deshuffle coproduct ∆ of S(AT ⊕D

D ). We present a
generalization of the result obtained in [22] for classical forests.
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Theorem 4.18 The algebra B▷ := (CF⊗D
D , ▷) endowed with the deshuffle coproduct ∆ is a

bialgebra dual to the CEM bialgebra BCEM := (CF⊗D
D , ·,∆CEM ) with respect to the ⟨−,−⟩σ

inner product. Moreover, HCEM := BCEM/⟨(1 − d )ιd : d ∈ D⟩ is a Hopf algebra dual to the
Grossman-Larson Hopf algebra H▷, which is an appropriate sub-bialgebra of B▷ and a universal
enveloping algebra of (AT ⊕D

D ,▶).

Proof Let us start by proving that B▷ is a bialgebra. The unit is given by u := ⊗d∈D exp·C(
d ιd)

and counit is given by ϵ := 1∗ ∈ CF⊗D∗
D . It is straightforward to check that the counit is

compatible with the product and unit. We use the property ∆(exp·C(τ)) = exp·C(τ) ⊗ exp·C(τ)
to check that the unit is compatible with the coproduct, that is, ∆(u) = u⊗ u. We use

π ▷ (− · −) =
∑
(π)

(π(1) ▷−) · (π(2) ▷−)

and the associativity of ▷ to obtain the identity∑
(π),(µ)

(π(1) ▷ µ(1) ▷−)(π(2) ▷ µ(2) ▷−) =
∑
(π▷µ)

((π ▷ µ)(1) ▷−)((π ▷ µ)(2) ▷−).

Therefore, the compatibility of the product and coproduct is necessary. This proves that B▷ is
a bialgebra. Lemma 4.12 and Proposition 4.17 show that BCEM is the dual bialgebra of B▷.

Similarly to [22], we obtain a Hopf algebra once we take the quotient of BCEM by the

ideal ⟨(1− d )ιd : d ∈ D⟩. The Hopf algebra HCEM thus obtained is dual to the Hopf algebra H▷

which is isomorphic to the Grossman-Larson Hopf algebra obtained using Guin-Oudom process
applied to the insertion pre-Lie product ▶. The elements of H▷ have the form

⊗d∈D exp·C( d ιd) · π, for π ∈ CF⊗D
D .

Following Guin-Oudom, the Grossman-Larson algebra is a universal enveloping algebra of the
respective pre-Lie algebra. □

Theorem 4.19 (Substitution law) Let a ∈ CF∗
D and let {b0,d ∈ AT ∗

D : d ∈ D} be a
set of infinitesimal characters. Let us consider a map φ : D → AT D with φ(d) = δσ(b0,d),
let FD(d) = fd for d ∈ D, and let Sφ = FD ◦Aφ ◦ δσ, then,

Sφ(a) = S(b⊗D
c ⋆ a),

where b⊗D
c = ⊗d∈Dbc,dιd with bc,d being a character of CFD that extends b0,d.

Proof We use Lemma 4.15 and Proposition 4.13 to write Aφ as

Aφ(π) = δσ(b
⊗D
c ) ▷ π, where b⊗D

c = ⊗d∈Dbc,dιd,

with bc,d being a character of CFD that extends b0,d. We use the fact that Sφ = FD ◦ Aφ ◦ δσ
and Proposition 4.17 to obtain

Sφ(a) = FD

(
δσ(b

⊗D
c ) ▷ δσ(a)

)
= FD

(
δσ(b

⊗D
c ⋆ a)

)
= S(b⊗D

c ⋆ a).

This finishes the proof. □
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Analogously to [69], due to the relation between the homomorphism Aφ : CFD → CFD of
D-algebra and the corresponding map b⊗D

c ⋆ : CF∗
D → CF∗

D, we obtain Corollary 4.20.

Corollary 4.20 (Cointeraction) There is the following cointeraction between the substitution
law and the composition law:

a⊗D
c ⋆ (b ∗ c) = (a⊗D

c ⋆ b) ∗ (a⊗D
c ⋆ c),

for a⊗D
c = ⊗d∈Dac,dιd where ac,d are characters of CFD and b, c ∈ CF∗

D.

Proof Let φ(d) = δσ(a0,d), then we have

δσ(a
⊗D
c ⋆ (b ∗ c)) = Aφ(δσ(b ∗ c))

= Aφ(δσ(b)) ⋄Aφ(δσ(c))

= δσ((a
⊗D
c ⋆ b) ∗ (a⊗D

c ⋆ c)).

Since δσ is an isomorphism, the statement is proved. □

We extend the definition of ▶ to decorated aromatic forests as ▶: CF⊗D
D ⊗ AFD → AFD

and note that Φ is a CF⊗D
D -module morphism, that is,

Φ(π ▶ µ) = π ▶ Φ(µ).

We extend the substitution product ▷ : CF⊗D
D ⊗ AFD → AFD and the coproduct ∆CEM :

AFD → CF⊗D
D ⊗AFD and use Proposition 4.17 to see that Φ∗ is a CF⊗D

D -comodule morphism,
that is,

∆CEM ◦ Φ∗ = (id⊗Φ∗) ◦∆CEM .

Using the freeness of the tracial commutative D-algebra (AFD,↷), we note that for every
map φ : D → AT D, there exists a corresponding Aφ : AFD → AFD with the following
property

Φ ◦Aφ = Aφ ◦ Φ,

where we use the same notation for the Aφ over decorated clumped and aromatic forests. We
describe the substitution law for S-series over decorated aromatic forests by using the fact that
any functional over decorated aromatic forests a ∈ AF∗

D can be written as an image of the
map Φ∗, that is, there exists a functional aC ∈ CF∗

D such that a = aC ◦ Φ∗.

Theorem 4.21 Using the notation from Theorem 4.19 and given a ∈ AFD, we have

Sφ(a) = S(b⊗D
c ⋆ a),

with convolution product ⋆ with respect to ∆CEM : AFD → CF⊗D
D ⊗AFD.

Proof We note that given a functional a ∈ AF∗
D, we can define a functional aC ∈ CF∗

D such
that a = aC ◦Φ∗, moreover, S(a) = S(aC). The statement follows from the following identities,

Sφ(a) = Sφ(aC) = S(b⊗D
c ⋆ aC) = S((b⊗D

c ⋆ aC) ◦ Φ∗) = S(b⊗D
c ⋆ (aC ◦ Φ∗)) = S(b⊗D

c ⋆ a),

with b⊗D
c := ⊗d∈Dbc,dιd. □

Corollary 4.20 is extended to functionals over decorated aromatic forests in a similar fashion.
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4.4 Algebraic structures of exotic aromatic forests

We extend the results of Section 4 to the space EAF of exotic aromatic forests defined in
Definition 2.2. To do so, we build the commutative tracial D-algebra (EAF ,↷) of exotic
aromatic forests using a commutative tracial D-algebra (AF•N,↷) of decorated aromatic forests.

We define the D-algebra (AF•N,↷) to be a vector space spanned by aromatic forests with
black vertices and vertices decorated by natural numbers N. The decoration is denoted by
α : V (π) → {•} ∪ N and we assume that every number decorates an even number of vertices,
that is, α−1(n) is even for n ∈ N, and a vertex decorated by a number cannot have an incoming
edge. We note that our assumptions on the structure of π ∈ AF•N are compatible with the
commutative tracial D-algebra structure. For example,

1 1 2
1

2 1 · 1 1 2 2
=

1 1 2
1

2 1 1 1 2 2
,

1 1 ↷
1

1
=

1 1 1
1
+

1 1
1
1
.

We can obtain the D-algebra (AF•N,↷) by choosing an appropriate sub-D-algebra and taking
the quotient over an appropriate ideal of the free D-algebra. We define the commutative tracial
D-algebra of exotic forests (EAF ,↷) as a sub-D-algebra of (AF•N,↷) spanned by the elements

(π, αe) :=
∑

α∈P (αe)

(π, α) ∈ AF•N, (11)

with |α−1
e (n)| ∈ {0, 2} for n ∈ N. P (αe) is the set of decorations α with α−1(•) = α−1

e (•) and

α(v1) = α(v2) if αe(v1) = αe(v2), for v1, v2 ∈ V (π).

We note that the exotic aromatic forests constructed in this way agree with Definition 2.2. The
D-algebra (EAF ,↷) of exotic aromatic forests is graded by the number of roots. The algebraic
structures related to D-algebras are studied in Section 4.1.

An exotic aromatic forest is connected if it cannot be written as a concatenation of non-trivial
exotic aromatic forests. This notion of connectedness coincides with the one found in [56].
We note that due to the pairings of the number vertices (that are also called lianas), exotic
aromatic forests can contain connected components which have more than one root, which is a
major difference with the standard Butcher trees and forests. For example, the following exotic
aromatic forests are connected:

1 1 ,
1

1

,
1 1 2 2 3

3 .

We consider the coalgebra (EAF ,∆EA) with EA-linear deshuffle coproduct ∆EA whose EA-
module of primitive elements Prim(EAF ,∆EA) is spanned by the connected exotic aromatic
forests, for example,

∆EA(

1 1
2 2 3

3 ) =

1 1
2 2 3

3 ⊗ 1+ 1⊗
1 1

2 2 3
3 .

We note that the space of exotic aromatic forests EAF can be defined as the symmetric
algebra SEA(Prim(EAF)) over the ring of exotic aromas. Analogously to Section 4.2, we define
two possible extensions of the concept of clumped forests to the exotic context,

CEF := S(Prim(EAF)), CEF1 := S(EAT ).
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We note that both symmetric algebras are over the base field R, meaning that the exotic aromas
are attached to the rooted components. We recall that EAT is the space of exotic aromatic
forests with one root and CEF1 ⊂ CEF . Some elements of CEF are

1
1 ·

2
2 · 3 3 4

4 ,
1 1 2

2 .

We note that
1 1 ·

2
2 ̸= 1 1 ·

2
2
in CEF .

Let Φ : CEF → EAF denote the map that forgets the ”clumping”, that is, it satisfies
kerΦ = ⟨ωτ · γ · π − τ · ωγ · π : ω ∈ EA, τ, γ ∈ EAT , π ∈ CEF⟩. The results of Section 2 yield
the following structure on exotic aromatic and exotic clumped forests.

Theorem 4.22 The space of exotic aromatic forests forms a Grossman-Larson Hopf algebroid

(EAF ,1, ⋄, ϵEA,∆EA, S⋄),

and the space of clumped exotic forests forms a Grossman-Larson Hopf algebra

(CEF ,1, ⋄, ϵ,∆, SC
⋄ ).

Moreover, Φ : CEF → EAF is a surjective algebra morphism.

Proof We note that, according to the definition (11), EAF is obtained by taking a sub-D-
algebra of AF•N, therefore, we can use the analysis from Section 4.1 to build a A/R-bialgebra
(EAF ,1, ⋄, ϵEA,∆EA). We obtain a bialgebra (CEF ,1, ⋄, ϵ,∆) by noting that CEF can be
obtained by taking a sub-D-algebra of D-algebra CF•N which is a special case of CFD (Section 4.2).

Following [66], the primitive elements Prim(EAF) are endowed with a pre-Lie product:

π1 ↷̃ π2 := π1 ⋄ π2 − π1 · π2, for π1, π2 ∈ Prim(EAF).

We use the pre-Lie product ↷̃ to define the antipode S⋄ for EAF by replacing all instances of ↷
in Proposition 4.8 by the product ↷̃, all instances of τ ∈ TD by τ ∈ Prim(EF ,∆), and ω ∈ AD

by ω ∈ EA where EF denotes the space of exotic forests, that is, exotic aromatic forests without
aromas. The antipode SC

⋄ for CEF is obtained in a similar way, but the trees τ ∈ TD are
replaced by τ ∈ Prim(EAF) and the identities (i) are ignored. This proves that we have a Hopf
algebroid and Hopf algebra structures over EAF and CEF , respectively. We note that Φ(1) = 1
and Φ(π ⋄ µ) = Φ(π) ⋄ Φ(µ), so Φ is a surjective algebra morphism. □

Theorem 4.23 The space of clumped exotic forests CEF forms a Hopf algebra

(CEF ,1, ·,1∗,∆CEM , S),

where ∆CEM is the coproduct extended from Prim(EAF) to CEF by respecting the concatenation
product. Moreover, Φ∗ : EAF → CEF is a CEF1-comodule morphism where Φ∗ is the adjoint
of Φ, that is, Φ ◦ δσ = δσ ◦ Φ∗.

Proof The space CEF can be defined analogously to EAF using (11) such that CEF ⊂ CFD

with D = {•} ∪ N. We recall that, following Theorem 4.18, BCEM := (CF⊗D
D , ·,∆CEM ) is a

bialgebra which becomes a Hopf algebra HCEM := (CFD, ·,∆CEM ) once we take the quotient
of BCEM by the ideal ⟨(1− )ι•⟩+ J defined as

J := ⟨(1− k )ι k
, πι

k
: π /∈ {1, k }, k ∈ N⟩.
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The obtained coproduct of HCEM can now be described as

∆CEM (π) =
∑
p⊂π

p⊗ π/p,

where the sum is over all clumped subforests p ∈ CFD that cover all black vertices and π/p
is the clumped forest obtained by contracting the aromatic trees of p into black vertices. If
the forest π ∈ CFD doesn’t have valid subforests p ∈ CFD, then ∆CEM (π) = 1 ⊗ π. We note
that the construction of CEF with the CEM Hopf algebra structure as a quotient and subspace
of CFD must be dual to the one seen in (11). We obtain the Hopf algebra

(CEF ,1, ·,1∗,∆CEM , S),

with ∆CEM : CEF → CEF ⊗ CEF . We recall the analysis of Section 4.3 and note that
since exp⊙C(b0) is a character of CEF1, we consider ∆CEM : CEF → CEF1 ⊗ CEF . We refer to
the discussion from Section 4.3 for showing that Φ∗ is a CEF1-comodule morphism. □

We can simplify the computation of the substitution law for exotic aromatic S-series using the
map Φ and Theorem 4.23. Given a functional a ∈ EAF∗, we use the discussion from Section 4.2
to define a functional aC ∈ CEF over clumped exotic forests as

aC(π) :=
1

nm
a(Φ(π)),

where n is the number of rooted components and m is the number of aromas. We have the
property a = aC ◦ Φ∗ which we use to compute the substitution law as follows

bc ⋆ a = bc ⋆ (aC ◦ Φ∗) = (bc ⋆ aC) ◦ Φ∗.

The substitution law bc ⋆ aC over CEF is easier to compute since ∆CEM over CEF respects
concatenation. Therefore, computing the values of ∆CEM on Prim(EAF) is enough to obtain
its values over all clumped exotic forests.

Example 4.24 Let us compute the CEM coproduct over EAF using the comodule morphism Φ∗.

(∆CEM ◦ Φ∗)(
1

1 ) = ∆CEM (
1

1 · ) + ∆CEM (
1

1 · )

= ∆CEM (
1

1 )̂·∆CEM ( ) + ∆CEM (
1

1 )̂·∆CEM ( ),

where (π(1) ⊗ π(2))̂·(µ(1) ⊗ µ(2)) = (π(1) · µ(1))⊗ (π(2) · µ(2)) and

∆CEM (
1

1 ) = ⊗ 1
1 + ⊗ 1

1 ,

∆CEM ( ) = ⊗ + ⊗ ,

∆CEM ( ) = ⊗ ,

∆CEM (
1

1 ) = ⊗ 1
1 .

Therefore, we have

(∆CEM ◦ Φ∗)(
1

1 ) = ⊗ 1
1 · + · ⊗ 1

1

+ ⊗ 1
1 · + · ⊗ 1

1

= ⊗ Φ∗(
1

1 ) + 2 · ⊗ Φ∗(
1

1 ),

which agrees with a direct computation that gives

∆CEM (
1

1 ) = ⊗ 1
1 + 2 · ⊗ 1

1 .
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5 Conclusion

In this paper, we uncover the fundamental algebraic structures that govern the approximations
in the weak sense and for the invariant measure of stochastic dynamics with additive noise in
both Euclidean and manifold settings. We present in particular the novel concept of clumping
for the Hopf algebra structures associated with substitution using aromas. Additionally, we
introduce the free commutative tracial D-algebra of decorated aromatic forests, along with the
related Grossman-Larson Hopf algebroid and pre-Hopf algebroid. This algebraic study enables
us to describe the substitution law for decorated aromatic forests by linking substitution to
D-algebra homomorphisms. Understanding the substitution law for exotic aromatic S-series
provides an elegant algebraic framework for the backward error analysis of stochastic dynamics
at any order, with an explicit expression for the modified vector field.

There are a handful of challenging open questions that follow from the present work. The
deeper understanding of the integration by parts operation given in Proposition 3.4 in the
Euclidean setting is key in extending Theorems 3.10 and 3.14 to the manifold case for the creation
of modified equations and the backward error analysis of projection methods. An explicit
description of the combination of forests that vanish by integration by parts (see Remark 3.5) is
necessary for the derivation of order conditions for the invariant measure at any order. Following
Remark 3.12, an alternate approach could be to characterise the modified vector field of methods
that preserve the invariant measure exactly in the spirit of [55, 54] in the context of volume-
preserving methods. The exotic aromatic formalism is the natural tool in this context as the
operations div and ⟨f,−⟩ of equation (10) precisely generate the aromas. This calls for future
works in the spirit of [55, 54].

The Butcher forests and their extensions have been successfully applied to rough paths
with the construction of branched rough paths [40] (see also [43, 38]), planarly branched rough
paths [78, 29, 34], and aromatic rough paths [61]. In this context, the substitution law corresponds
to the translation of rough paths, and the notion of composition of exotic aromatic trees [76, 56]
is closely linked to the Hopf algebra of multi-indices [65, 48]. The creation and study of rough
paths structures arising from exotic aromatic or exotic clumped forests is natural and is matter
for later work. Moreover, we use the clumping idea to explain the algebraic behaviour brought
by the divergence and the scalar product operators. One could consider general multilinear maps
that transform trees into rootless graphs. The questions of the freeness, the general algebraic
structure, and the potential applications are all interesting matters for follow ups.

Following the recent work [10], the approach with projection methods for the sampling of
ergodic dynamics on manifolds could be replaced with an intrinsic approach with Lie-group
methods. This new approach could yield simple and efficient intrinsic discretisations of high-
order for sampling the invariant measure, which could be combined with other popular techniques
such as postprocessing, Metropolisation,. . . It could also greatly simplify the tedious algebraic
structure associated to projection methods and yield a structure similar to the ones appearing
in the study of Lie group methods [46]. This will be studied in upcoming works.
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Probab. Stat., 51(1):207–251, 2015.

[44] R. Z. Hasminskii. Stochastic stability of differential equations, volume 7 of Monographs and Textbooks
on Mechanics of Solids and Fluids: Mechanics and Analysis. Sijthoff & Noordhoff, Alphen aan den
Rijn—Germantown, Md., 1980. Translated from the Russian by D. Louvish.

[45] M. E. Hoffman. Combinatorics of rooted trees and Hopf algebras. Trans. Amer. Math. Soc.,
355(9):3795–3811, 2003.

[46] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna. Lie-group methods. In Acta numerica,
2000, volume 9 of Acta Numer., pages 215–365. Cambridge Univ. Press, Cambridge, 2000.

[47] A. Iserles, G. R. W. Quispel, and P. S. P. Tse. B-series methods cannot be volume-preserving. BIT
Numer. Math., 47(2):351–378, 2007.

[48] J.-D. Jacques and L. Zambotti. Post-Lie algebras of derivations and regularity structures. Submitted,
arXiv:2306.02484, 2023.

[49] Y. Komori, T. Mitsui, and H. Sugiura. Rooted tree analysis of the order conditions of ROW-type
scheme for stochastic differential equations. BIT Numer. Math., 37(1):43–66, 1997.

[50] M. Kopec. Weak backward error analysis for Langevin process. BIT Numer. Math., 55(4):1057–1103,
2015.

[51] M. Kopec. Weak backward error analysis for overdamped Langevin processes. IMA J. Numer. Anal.,
35(2):583–614, 2015.
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Appendices

A Examples for forests of small order

We present in Tables 1 and 2 the Butcher-Connes-Kreimer coproduct and the substitution law
of all primitive exotic aromatic forests Prim(EAF ,∆EA) of order up to three. To compute the
Butcher-Connes-Kreimer coproduct efficiently, we use Remark 4.7 which implies the property

∆BCK(π1 · π2) = ∆BCK(π1)̂·∆BCK(π2),

where (x⊗ y)̂·(u · v) = (x · u)⊗ (y · v) and π1, π2 ∈ AFD. Therefore, the values of the Butcher-
Connes-Kreimer coproduct on primitive exotic aromatic forests are enough to compute the values
for general exotic aromatic forests in a straightforward way.

The forests in the table are ordered according to their order as defined in Definition 2.2 and
by the number of roots.

Table 1: Butcher-Connes-Kreimer coproduct for all primitive exotic aromatic forests up to order
three

π ∆BCK(π)

1⊗ + ⊗ 1

1⊗ + ⊗ 1

1⊗ + ⊗ 1
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1 1 1⊗ 1 1 + 1 1 ⊗ 1

1⊗ + ⊗ + ⊗ 1

1⊗ + ⊗ 1
1 1

1⊗
1 1

+ 1 1 ⊗ +

1 1

⊗ 1

1⊗ + ⊗ + ⊗ 1
1 1

1⊗ 1 1
+ 1 1 ⊗ +

1 1 ⊗ 1
1 1

1⊗ 1 1
+ 1 1 ⊗ +

1 1 ⊗ 1

1⊗ + ⊗ + ⊗ 1
1 1

1⊗ 1 1
+ 1 1 ⊗ +

1 1 ⊗ 1
1

1 1⊗
1

1 + 1 1 ⊗ +

1

1 ⊗ 1
1

1 1⊗ 1
1 + 1 1 ⊗ +

1
1 ⊗ 1

1
1 1⊗ 1

1 + 1 1 ⊗ +
1

1 ⊗ 1

1⊗ + ⊗ + ⊗ + ⊗ 1

1⊗ + 2 ⊗ + ⊗ + ⊗ 1

1⊗ + ⊗ + ⊗ 1

1⊗ + ⊗ 1
1 1

1⊗

1 1

+ 1 1 ⊗ +
1 1 ⊗ +

1 1

⊗ 1
1

1

1⊗

1
1

+ 1 1 ⊗ +
1

1 ⊗ +

1
1

⊗ 1
1 1

1⊗
1 1

+ 1 1 ⊗ + ⊗
1 1

+ 1 1 ⊗ +

1 1

⊗ 1
1 1

1⊗
1 1

+ 1 1 ⊗ +

1

1 ⊗ +

1

1 ⊗ +

1 1

⊗ 1
1 1

1⊗
1 1

+ 1 1 ⊗ +

1 1

⊗ 1
1 1

1⊗
1 1

+ 1 1 ⊗ +

1 1

⊗ 1
1 1 2 2

1⊗
1 1 2 2

+ 2 1 1 ⊗
1 1

+ 1 1 2 2 ⊗ +

1 1 2 2

⊗ 1

1⊗ + ⊗ + ⊗ + ⊗ 1

1⊗ + 2 ⊗ + ⊗ + ⊗ 1

1⊗ + 2 ⊗ + ⊗ + ⊗ 1
1 1

1⊗
1 1

+ 1 1 ⊗ +
1 1 ⊗ +

1 1

⊗ 1
1

1
1⊗

1
1
+ 1 1 ⊗ +

1
1 ⊗ +

1
1 ⊗ 1
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1
1

1⊗ 1
1

+ 1 1 ⊗ +
1

1 ⊗ +
1

1

⊗ 1
1 1

1⊗ 1 1
+ 1 1 ⊗ + ⊗ 1 1

+ 1 1 ⊗ +
1 1 ⊗ 1

1 1
1⊗ 1 1

+ 1 1 ⊗ + ⊗ 1 1
+ 1 1 ⊗ +

1 1 ⊗ 1
1 1

1⊗ 1 1
+ 1 1 ⊗ + ⊗ 1 1

+ 1 1 ⊗ +
1 1 ⊗ 1

1 1 2 2
1⊗ 1 1 2 2

+ 2 1 1 ⊗ 1 1
+ 1 1 2 2 ⊗ +

1 1 2 2 ⊗ 1
2 1 1 2

1⊗ 2 1 1 2
+ 1 1 ⊗ 1 1

+ 1 1 ⊗ 1 1
+ 1 1 2 2 ⊗ +

2 1 1 2 ⊗ 1
2 2 1 1

1⊗ 2 2 1 1
+ 2 1 1 ⊗ 1 1

+ 1 1 2 2 ⊗ +
2 2 1 1 ⊗ 1

1 2 1 2
1⊗ 1 2 1 2

+ 2 1 1 ⊗ 1 1
+ 1 1 2 2 ⊗ +

1 2 1 2 ⊗ 1

1
1

1⊗ 1
1

+ 1 1 ⊗ +
1

1 ⊗ +

1

1 ⊗ +
1

1

⊗ 1
1 1

1⊗ 1 1
+ 1 1 ⊗ + 2

1
1 ⊗ +

1 1 ⊗ 1

1⊗ + ⊗ + ⊗ + ⊗ 1

1⊗ + 2 ⊗ + ⊗ + ⊗ 1
1 1

1⊗
1 1

+ 1 1 ⊗ +
1 1 ⊗ +

1 1

⊗ 1
1

1
1⊗

1
1
+ 1 1 ⊗ +

1
1 ⊗ +

1
1 ⊗ 1

1 1
1⊗ 1 1

+ 1 1 ⊗ + ⊗ 1 1
+ 1 1 ⊗ +

1 1 ⊗ 1
1 1 2 2

1⊗ 1 1 2 2
+ 2 1 1 ⊗ 1 1

+ 1 1 2 2 ⊗ +
1 1 2 2 ⊗ 1

1

1 1⊗

1

1 + 1 1 ⊗ +
1

1 ⊗ +

1

1 ⊗ 1
1

1 1⊗
1

1 + 1 1 ⊗ + ⊗
1

1 + 1 1 ⊗ +

1

1 ⊗ 1
1

1
1⊗

1
1
+ 1 1 ⊗ +

1
1 ⊗ +

1

1 ⊗ +

1
1 ⊗ 1

1

1 1⊗
1

1 + 1 1 ⊗ +

1

1 ⊗ 1
1 2 2

1 1⊗
1 2 2

1 + 1 1 ⊗
1

1 + 1 1 ⊗
1 1

+ 1 1 2 2 ⊗ +

1 2 2

1 ⊗ 1
1

1 1⊗
1

1 + 1 1 ⊗ +
1

1 ⊗ +

1

1 ⊗ 1
1

1 1⊗
1

1 + 1 1 ⊗ +
1

1 ⊗ +

1

1 ⊗ 1
1
1 1⊗ 1

1 + 1 1 ⊗ + ⊗ 1
1 + 1 1 ⊗ +

1
1 ⊗ 1

1 1
1

1 1
+ 1 1 ⊗ + 2

1
1 ⊗ +

1 1 ⊗ 1
1 2 2

1 1⊗ 1 2 2
1 + 1 1 ⊗ 1

1 + 1 1 ⊗ 1 1
+ 1 1 2 2 ⊗ +

1 2 2
1 ⊗ 1

1
1 1⊗ 1

1 + 1 1 ⊗ + ⊗ 1
1 + 1 1 ⊗ +

1
1 ⊗ 1

1
1 1⊗ 1

1 + 1 1 ⊗ + ⊗ 1
1 + 1 1 ⊗ +

1
1 ⊗ 1

1 1 2
2 1⊗ 1 1 2

2 + 1 1 ⊗ 1 1
+ 1 1 ⊗ 1

1 + 1 1 2 2 ⊗ +
1 1 2

2 ⊗ 1
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2 1 1
2 1⊗ 2 1 1

2 + 1 1 ⊗ 1 1
+ 1 1 ⊗ 1

1 + 1 1 2 2 ⊗ +
2 1 1

2 ⊗ 1
1 1 2

2 1⊗ 1 1 2
2 + 1 1 ⊗ 1 1

+ 1 1 ⊗ 1
1 + 1 1 2 2 ⊗ +

1 1 2
2 ⊗ 1

1 2

1 2 1⊗
1 2

1 2 + 2 1 1 ⊗
1

1 + 1 1 2 2 ⊗ +

1 2

1 2 ⊗ 1
1 2

1 2 1⊗ 1 2
1 2 + 2 1 1 ⊗ 1

1 + 1 1 2 2 ⊗ +
1 2

1 2 ⊗ 1
1 2

1 2 1⊗ 1 2
1 2 + 2 1 1 ⊗ 1

1 + 1 1 2 2 ⊗ +
1 2

1 2 ⊗ 1
1 2

1 2 1⊗ 1 2
1 2 + 2 1 1 ⊗ 1

1 + 1 1 2 2 ⊗ +
1 2

1 2 ⊗ 1

We refer to the discussion from Section 2.2 for an efficient way to compute the CEM coaction.
The computations can be checked using Proposition 4.17 with the property

⟨∆CEM (π), π1 ⊗ π2⟩ =
σ(π)⟨π1 ▷ π2, π⟩
σ(π1)σ(π2)

.

Table 2: CEM coaction for all exotic aromas and primitive exotic aromatic forests up to order
three

π ∆CEM (π)

⊗

⊗

⊗

1 1 1⊗ 1 1

⊗ + ⊗ + ⊗

⊗ + 2 ⊗
1 1

⊗
1 1

+ 2

1

1 ⊗ +
1 1 ⊗

⊗ + ⊗ + ⊗
1 1 ⊗ 1 1

+ 2
1

1 ⊗ +
1 1 ⊗

1 1 ⊗ 1 1
+ 2

1
1 ⊗

⊗ + ⊗
1 1 ⊗ 1 1

+
1 1 ⊗

⊗ + ⊗
1

1 ⊗
1

1 +

1

1 ⊗

⊗ + ⊗
1

1 ⊗ 1
1 +

1
1 ⊗

1
1 ⊗ 1

1

1 1 ⊗ 1 1
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1 1 ⊗ 1 1

⊗ + 2 ⊗ + ⊗ + ⊗ + ⊗

⊗ + 2 ⊗ + 2 ⊗ + ⊗

⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗

+ ⊗

⊗ + 3 ⊗ + 3 ⊗
1 1

⊗

1 1

+
1 1 ⊗ + ⊗

1 1

+
1 1 ⊗

+2

1

1 ⊗ +

1 1

⊗
1

1

⊗

1
1

+ ⊗
1 1

+

1

1 ⊗ +

1

1 ⊗

+

1
1 ⊗

1 1 ⊗
1 1

+ ⊗
1 1

+
1 1 ⊗ +

1 1

⊗

+2

1

1 ⊗ +
1 1 ⊗

1 1 ⊗
1 1

+ 2 ⊗
1 1

+ 2

1

1 ⊗ + 2

1

1 ⊗

+2

1
1 ⊗

1 1

⊗
1 1

+ 2

1
1 ⊗ + 2

1

1 ⊗ + 2 ⊗
1 1

1 1 ⊗
1 1

+
1 1 ⊗ + ⊗

1 1

+

1 1

⊗

+2

1

1 ⊗ +
1 1 ⊗

1 1 2 2

⊗
1 1 2 2

+ 2
1 1 ⊗

1 1

+ 4

1 1 2

2 ⊗ +
1 1 2 2 ⊗

⊗ + 2 ⊗ + ⊗ + ⊗

+ ⊗
⊗ + 2 ⊗ + 2 ⊗ + ⊗

⊗ + ⊗ + 2 ⊗ + ⊗
1 1 ⊗

1 1

+
1 1 ⊗ + ⊗ 1 1

+
1 1 ⊗

+

1

1 ⊗ +

1 1

⊗
1

1 ⊗
1

1
+ ⊗ 1 1

+

1

1 ⊗ +
1
1 ⊗

+
1 1 ⊗ +

1
1 ⊗
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1
1

⊗ 1
1

+

1

1 ⊗ +
1

1 ⊗ +
1 1 ⊗

+ ⊗ 1 1

1 1 ⊗ 1 1
+ ⊗ 1 1

+
1 1 ⊗ +

1
1 ⊗

+
1 1 ⊗ + 2

1
1 ⊗ +

1 1 ⊗

1 1 ⊗ 1 1
+ ⊗ 1 1

+
1

1 ⊗ +
1
1 ⊗

+
1

1 ⊗ +
1 1 ⊗

1 1 ⊗ 1 1
+ ⊗ 1 1

+
1 1 ⊗ +

1
1 ⊗

+
1 1 ⊗ + 2

1
1 ⊗ +

1 1 ⊗
1 1 2 2 ⊗ 1 1 2 2

+ 2
1 1 ⊗ 1 1

+ 4
1 1 2

2 ⊗ +
1 1 2 2 ⊗

2 1 1 2 ⊗ 2 1 1 2
+

1 1 ⊗ 1 1
+

1 1 2
2 ⊗ + 2

2 1 2
1 ⊗

+
2 1 1

2 ⊗
2 2 1 1 ⊗ 2 2 1 1

+ 2
1 1 ⊗ 1 1

+ 4
2 1 1

2 ⊗ +
1 1 2 2 ⊗

1 2 1 2 ⊗ 1 2 1 2
+ 4

2 1 1
2 ⊗

1
1 ⊗ 1

1

+
1

1 ⊗ +

1

1 ⊗ + · ⊗ 1 1

+ 1

1

⊗ + 1
1 ⊗ +

1
1 ⊗

1 1 ⊗ 1 1
+ 2

1
1 ⊗ + 2

1
1 ⊗

⊗ + 2 ⊗ + ⊗

⊗ + 2 ⊗ + ⊗
1 1

⊗
1 1

+
1 1 ⊗ + ⊗ 1 1

+

1 1

⊗
1

1 ⊗
1

1
+ ⊗ 1 1

+

1
1 ⊗

1 1 ⊗ 1 1
+

1 1 ⊗ + ⊗ 1 1
+

1 1 ⊗
1 1 2 2 ⊗ 1 1 2 2

+ 2
1 1 ⊗ 1 1

+
1 1 2 2 ⊗

⊗ + 2 · ⊗ + ⊗ + ⊗

⊗ + ⊗ + · ⊗ + ⊗

⊗ + 2 ⊗ + ⊗
1 1 ⊗ 1 1

+ ⊗ 1 1
+

1 1 ⊗ +
1 1 ⊗

⊗ + 4 · ⊗ + ⊗
1 1

⊗
1 1

+
1 1 ⊗ + 2

1

1 ⊗ + ⊗ 1 1
+

1 1

⊗
1

1 ⊗
1

1 + ⊗
1

1 +

1

1 ⊗ +

1

1 ⊗
1

1 ⊗

1

1 + ⊗
1

1 +

1

1 ⊗
1

1 ⊗
1

1 + ⊗
1

1 +

1

1 ⊗
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1
1 ⊗

1
1
+ ⊗ 1 1

+

1

1 ⊗ +

1
1 ⊗

1

1 ⊗
1

1 + 2 ⊗
1

1 +

1

1 ⊗
1 2 2

1 ⊗
1 2 2

1 +
1 1 ⊗

1

1 +

1

1 ⊗ 1 1
+

1 2 2

1 ⊗

⊗ + ⊗ + 2 · ⊗ + ⊗

⊗ + ⊗ + · ⊗ + · ⊗ + ⊗
1 1 ⊗ 1 1

+
1 1 ⊗ + ⊗ 1 1

+ 2
1

1 ⊗ +
1 1 ⊗

1 1 ⊗ 1 1
+ ⊗ 1 1

+ 2
1

1 ⊗ +
1 1 ⊗

1 1 ⊗ 1 1
+ ⊗ 1 1

+
1 1 ⊗ +

1 1 ⊗

⊗ + 3 · ⊗ + 2 · ⊗ + ⊗

⊗ + 6 · ⊗ + ⊗
1

1 ⊗
1

1 + ⊗
1

1 +

1

1 ⊗ +

1

1 ⊗
1

1 ⊗ 1
1 + 2 · ⊗ 1

1 +
1

1 ⊗ +
1

1 ⊗
1

1 ⊗ 1
1 + 4 · ⊗ 1

1 +
1

1 ⊗ +
1

1 ⊗
1

1 ⊗
1

1 + ⊗ 1
1 +

1

1 ⊗
1
1 ⊗ 1

1 + ⊗ 1
1 +

1
1 ⊗ +

1
1 ⊗

1
1 ⊗ 1

1 + ⊗ 1
1 +

1
1 ⊗ +

1
1 ⊗

1 1 2
2 ⊗ 1 1 2

2 +
1 1 ⊗ 1

1 +
1

1 ⊗ 1 1
+

1 1 2
2 ⊗

2 1 1
2 ⊗ 2 1 1

2 +
1 1 ⊗ 1

1 +
2

2 ⊗ 1 1
+

2 1 1
2 ⊗

1 1 2
2 ⊗ 1 1 2

2 +
1 1 2

2 ⊗
1

1 ⊗
1

1 + ⊗ 1
1

1
1 ⊗ 1

1 + ⊗ 1
1

1 1 ⊗ 1 1

1 2 2
1 ⊗ 1 2 2

1 +
1 1 ⊗ 1

1

1

1 ⊗
1

1 + ⊗
1

1 +

1

1 ⊗
1

1 ⊗

1 1 ⊗ 1 1 + ⊗ 1 1

1 1 ⊗ 1 1 + 2 ⊗ 1 1

1 1 ⊗ 1 1 + 2 ⊗ 1 1

1 1

2 2 ⊗
1 1

2 2 +
1 1 ⊗ 1 1 + 2

1

1 ⊗ 1 1

1 2

1 2 ⊗
1 2

1 2 + 2

1

1 ⊗ 1
1

1
1 ⊗ 1

1 + ⊗ 1
1

1 1 ⊗ 1 1 + ⊗ 1 1
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1 1
2 2 ⊗ 1 1

2 2 + 2
1

1 ⊗ 1 1

1 1
2 2 ⊗ 1 1

2 2 + 2
1

1 ⊗ 1 1

1 1 ⊗ 1 1 + 2 · ⊗ 1 1 + ⊗ 1 1

1 1 ⊗ 1 1 + 4 · ⊗ 1 1

1 2
1 2 ⊗ 1 2

1 2 + 2
1

1 ⊗ 1
1

1 2
1 2 ⊗ 1 2

1 2 + 2
1

1 ⊗ 1
1

1 2
1 2 ⊗ 1 2

1 2
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