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Abstract

Our goal is to highlight some of the deep links between numerical splitting methods and
control theory. We consider evolution equations of the form ẋ = f0(x) + f1(x), where f0
encodes a non-reversible dynamic, so that one is interested in schemes only involving forward
flows of f0. In this context, a splitting method can be interpreted as a trajectory of the
control-affine system ẋ(t) = f0(x(t)) + u(t)f1(x(t)), associated with a control u which is a
finite sum of Dirac masses. The general goal is then to find a control such that the flow of
f0 + u(t)f1 is as close as possible to the flow of f0 + f1.

Using this interpretation and classical tools from control theory, we revisit well-known
results concerning numerical splitting methods, and we prove a handful of new ones, with
an emphasis on splittings with additional positivity conditions on the coefficients. First, we
show that there exist numerical schemes of any arbitrary order involving only forward flows
of f0 if one allows complex coefficients for the flows of f1. Equivalently, for complex-valued
controls, we prove that the Lie algebra rank condition is equivalent to the small-time local
controllability of a system. Second, for real-valued coefficients, we show that the well-known
order restrictions are linked with so-called “bad” Lie brackets from control theory, which are
known to yield obstructions to small-time local controllability. We use our recent basis of the
free Lie algebra to precisely identify the conditions under which high-order methods exist.
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1 Introduction

In this article, we highlight the deep links between numerical splitting methods and control theory
and use this comparison to provide new proofs of known results and conjectures of the order
theory of splitting methods. We focus on situations where f0 encodes a heuristically non-reversible
dynamic, so that one is interested in schemes only involving forward flows of f0. An overview of
the main results is presented in Section 1.3.

1.1 Order theory for splitting methods

Splitting methods Splitting methods aim at solving numerically evolutionary problems of the
general form

ẋ(t) = f0(x(t)) + f1(x(t)) + · · ·+ fp(x(t)), (1.1)

where the flows associated to the vector fields fn are easy to integrate numerically with high
precision or an exact solution is available. We consider p = 1 for simplicity in this paper. For a
given time T , a splitting method approximates x(T ) by composing flows associated to the fi. A
standard splitting method is of order N for solving (1.1) if for all smooth vector fields f0, f1, the
following estimate holds

x(T ) = eα1Tf0eβ1Tf1 . . . eαkTf0eβkTf1x(0) + O
T→0

(TN+1). (1.2)

For instance, the Lie–Trotter splitting is of order one:

x(T ) = eTf0eTf1x(0) + O
T→0

(T 2), (1.3)

and the Strang splitting is of order two:

x(T ) = eT/2f0eTf1eT/2f0x(0) + O
T→0

(T 3). (1.4)

Splitting methods are widely popular methods used for their straightforward implementation,
versatility, accuracy, and stability. They also have good geometric behaviour [45, 31, 11] for
preserving, for instance, energy, volume, symmetries, or symplecticity. They are heavily used for
the approximation of ODEs and PDEs (see, for instance, [8, 42, 27]), and also in the stochastic
setting, for instance in molecular dynamics [39, 17], with the popular BAOAB or UBU schemes
for kinetic Langevin (see also [2]).

Order theory In this paper, we are interested only in the creation of high-order splittings and
we ignore the stability analysis, as well as the preservation of geometric properties. The order
theory of splitting methods relies on the Baker–Campbell–Hausdorff formula or Magnus formula
[44] and it is possible to create methods of any high order, with for instance composition methods.
The derivation of the order conditions is found for instance in [45] and the modern formulation
uses the algebraic framework of free Lie algebras [52] and Hopf algebras (see, for instance, the
word series [48, 49] and the review [11, Sec. 2]). The formalism of free Lie algebras has a long
successful history in control theory [58, 5], and we extend the approach here to the study of splitting
methods. An important feature of the analysis is the choice of basis of the free Lie algebras. In
particular, we will use the basis recently introduced in [7]. The analysis also shares similarities
with Lie group methods [36]. Indeed, the study of Lie group methods relies on the study of the
compositions of frozen and exact flow exponentials, and the latter is also the object of interest in
the context of splitting methods (see [47, 43, 46, 26, 29, 25, 1]). The analysis of splitting methods
relies on words, while the analysis of Runge–Kutta like integrators relies on trees. In this context,
the analysis of splitting methods is simpler and more compact. We cite in particular the related
algebraic tree formalisms [15, 31] of Butcher trees, [35, 41] for exponential integrators, [14, 13] for
splitting schemes with low regularity initial data, and [53, 38, 12] for stochastic integrators.
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Order theory for semigroups The order theory of splitting methods becomes more involved
when additional positivity conditions are added. We study in particular the conditions of existence
of splitting schemes of high order with coefficients in (A,B), that is, when αi ∈ A, βi ∈ B for all i.
For non-reversible problems (heat equation, stochastic differential equations,...), a condition of the
form αi > 0 on the coefficients in (1.2) must be imposed. In this context, it is known [55, 59, 30, 8]
that the maximum order for splitting methods with coefficients in (R+,R) and (R+,R+) (sometimes
called forward splitting methods) is N = 2. A possible solution is the use of splitting methods with
complex coefficients. It first appeared in the context of Hamiltonian systems [18] and quantum
mechanics [3, 50] with low order. It then appeared simultaneously in the works [16, 34] for parabolic
problems, in the spirit of [33]. The large number of complex solutions for the order conditions offers
more flexibility in the choice of coefficients, and can lead to schemes with smaller truncation errors
and new symmetries. On the other hand, the use of complex arithmetic introduces an additional
cost for solving real problems, and extending the flows to the complex plane has to be done carefully
in order to avoid order reductions. The papers [16, 34] use symmetric composition methods to
create splitting methods in (C+,C+) up to order 14 (i.e. where all coefficients are complex numbers
with positive real part), though the error constants deteriorate in some cases [9]. In [9], it is proven
that splitting methods in (C+,C+) exist up to order 44, by building upon a splitting method of
order 6 in (R+,C+). In this paper, we prove in particular that splittings in (R+,C) exist up to
any order, giving a positive answer to the open question of [9, Remark 2.7] (with unconstrained
complex βi).

Commutator flows and degeneracies An alternative solution to go beyond the order barrier
is to introduce flows associated to specific commutators in the splitting methods, assuming that
these flows are explicitly available. The first such method in the literature is the Takahashi–Imada
splitting [60] (see also [54, 37, 22]). In the context of Hamiltonian dynamics, such splittings with
commutators appear under the name splitting methods with modified potentials [40, 54, 62]. We
refer to [11, Sections 3.2 and 8] for an extensive list of the use of splittings with commutators in
the literature. It is important to mention that the splitting schemes using commutators are of two
different types in the literature. The first type concerns splittings with commutators, that are,
general splitting methods where one allows the use of commutator flows. The second type is tied to
specific systems that satisfy degeneracies: the commutators satisfy some identities for the specific
fi considered and the splitting schemes use these degeneracies. Following the open questions in [8],
we provide new existence results of splitting schemes in (R+,R) with commutators and necessary
degeneracy conditions to obtain high order splitting schemes.

Link with control theory The link between splitting methods with A = R+ and control theory
is the following: a splitting method can be seen as a trajectory of the control system

ẋ(t) = f0(x(t)) + u(t)f1(x(t)) (1.5)

associated with a control u which is a sum of Dirac masses (αj is the duration of the step and βj
the amplitude of the jump) such that the associated flow of the time-varying vector field f0+u(t)f1
defined on [0, T ] is approximately eT (f0+f1) for some T > 0.

With this in mind, we revisit known results on numerical splitting methods, and prove new
ones. In particular, we identify Lie brackets that are obstructions to both high order numerical
splitting methods and small-time local controllability.

3



1.2 Definitions and notations

1.2.1 Formal brackets and evaluated Lie brackets

Definition 1.1 (Formal brackets). Let X = {X0, X1, . . . , Xm} for m ≥ 1 be a finite set of non-
commutative indeterminates. We denote by Br(X) the free magma over X, which can be defined
by induction: X ⊂ Br(X) and, if a, b ∈ Br(X), then the ordered pair (a, b) belongs to Br(X). For
b ∈ Br(X), we denote by |b| its length and by nj(b) the number of occurrences of Xj in b. For
a, b ∈ Br(X), we define ada(b) := (a, b) and by induction adn+1

a (b) := (a, adna(b)). For instance
(X0, X0) and b

′ := ad2X1
(X0) = (X1, (X1, X0)) are elements of Br(X) respectively of lengths 2 and

3, and n1(b
′) = 2, n0(b

′) = 1.

Definition 1.2. We give explicit names to some elements of Br(X):

M0 := X1 and Mν+1 := (Mν , X0) for every ν ∈ N, (1.6)

Wj := ad2Mj−1
(X0) = (Mj−1,Mj) for every j ∈ N. (1.7)

These notations will prove useful in stating our main results. In particular, we have M1 =
(X1, X0) and W1 = (X1, (X1, X0)).

Definition 1.3 (Lie bracket of vector fields). For smooth vector fields f, g, we denote their usual
Lie bracket by [f, g] =: adf (g) and use the adjoint representation adn+1

f (g) := [f, adnf (g)] for n ∈ N.

Definition 1.4 (Evaluated Lie bracket). If f0, . . . , fm are smooth vector fields and b ∈ Br(X),
then fb denotes the vector field obtained by replacing the indeterminates Xj with the corresponding
vector fields fj in the iterated bracket b.

We find for instance f(X1,(X2,X3)) = [f1, [f2, f3]] and fW1 = ad2f1(f0).

1.2.2 Splitting methods

In the sequel, we rely on the following definition of order of a splitting method.

Definition 1.5 (Order of a splitting method with (A,B) coefficients). Let A,B ⊂ C and N ∈ N∗.
We say that α = (α1, . . . , αk) ∈ Ak and β = (β1, . . . , βk) ∈ Bk for some k ∈ N∗ is a splitting
method of order (at least) N when, for every smooth vector fields f0, f1 on Kd (with K = R or C
and d ∈ N∗),

eT (f0+f1) = eα1Tf0eβ1Tf1 · · · eαkTf0eβkTf1 + O
T→0

(TN+1) (1.8)

in the following sense, used throughout the article: for every x0 ∈ Kd, there exist C = C(f0, f1, x0)
such that, for every T > 0,

|eT (f0+f1)x0 − eα1Tf0eβ1Tf1 · · · eαkTf0eβkTf1x0| ≤ CTN+1. (1.9)

In Definition 1.5 and throughout this paper, the role of the coefficients αi ∈ A (associated
with flows of f0) and βi ∈ B (associated with flows of f1) is not symmetric, since we will most
often consider situations where only forward flows of f0 can be used, while there will be no such
constraint on flows of f1.

In Definition 1.5, the parameters k, α, β must be independent of f0, f1 and T . A weaker
notion allows the parameters k, α, β to depend on a set F of vector fields, which might have some
degeneracies, potentially allowing for high-order methods.

Definition 1.6 (Splitting method relative to vector fields). Let F be a set of (pairs of) vector fields.
We say that a splitting method is of order N relative to F when (1.8) holds for any (f0, f1) ∈ F .
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Splitting methods of Definition 1.5 only involve flows of f0 and f1. For some systems, although
the flow of f0 + f1 is not directly available, one might have access to the flows of some specific
commutators of f0 and f1 (for example, the flow of fW1

= [f1, [f1, f0]], or more generally of some
fb for b ∈ Br(X)). This leads to the following definition.

Definition 1.7 (Splitting method involving commutator flows). Let X = {X0, X1}, m ∈ N∗ and
b1 := X1, b2, . . . , bm ∈ Br(X). With the notations of Definition 1.5, a splitting method of order N
involving X0 and b1, b2, . . . , bm is given by the additional data of c = (c1, . . . , ck) ∈ {b1, . . . , bm}k
such that

eT (f0+f1) = eα1Tf0eβ1T
|c1|fc1 eα2Tf0eβ2T

|c2|fc2 · · · eαkTf0eβkT
|ck|fck + O

T→0
(TN+1). (1.10)

We impose without loss of generality that between flows of the form eβfc , there always is a term
eαf0 with α > 0.

1.2.3 Controllability

Given smooth vector fields f0, f1, . . . , fm defined on a neighborhood of 0 ∈ Kd where K = R or C,
we consider the control-affine system

ẋ(t) = f0(x(t)) + u1(t)f1(x(t)) + · · ·+ um(t)fm(x(t)), (1.11)

where ui ∈ L1(0, T ) are the controls. When there is no control in front of f0 ̸= 0, such a system
is called “with drift” and one typically assumes that f0(0) = 0 and studies its behavior near the
equilibrium (x, u) = (0, 0). When there is a control u0(t) in front of f0 (or equivalently when
f0 = 0), the system is called “driftless” and (x, u) = (0, 0) is still an equilibrium. A handful of
concepts of controllability exist (see [7, Section 1.2] for further discussion). For the sake of clarity,
we will use the following definition in both cases.

Definition 1.8 (Small-state Small-Time-Local-Controllability). We say that (1.11) is small-state-
STLC when, for every T > 0, for every ε > 0, there exists δ > 0 such that, for every target state
x∗ ∈ B(0, δ), there exists u ∈ L1((0, T );Km) such that the solution to (1.11) associated with u and
initial data x(0) = 0 satisfies x(T ) = x∗ and x([0, T ]) ⊂ B(0, ε).

1.3 Main results

1.3.1 Arbitrary order (R,R) splitting methods

It is well-known that splitting methods with (R,R) coefficients of arbitrary order exist. With our
notations, one has the following classical result.

Theorem 1.9. For every N ∈ N∗, there exists an (R,R) splitting method of order N with a number
of flows at most 2 dim(LN (X))− 1 (which is bounded above1 by 2N+1).

Without any constraint on the real coefficients, an (R,R) splitting method corresponds to a
trajectory of the driftless control-affine system

ẋ(t) = u0(t)f0(x(t)) + u1(t)f1(x(t)) (1.12)

with state x(t) ∈ Rd and control (u0, u1) : R+ → R, where u0 and u1 are piecewise constant
functions with disjoint supports, and do not depend on (f0, f1).

In control theory, the analogue of Theorem 1.9 is the following result, known as the Chow–
Rashevskii necessary and sufficient condition for the controllability of driftless control-affine systems
[23, 51], leading to the so-called “Lie algebra rank condition” LieR(f0, f1)(0) = Rd, where Lie(f0, f1)
denotes the Lie algebra spanned on R by f0 and f1.

1See Section 2.1 for a definition of LN (X). By Witt’s formula [63], dimLN (X) = 1
N

∑
d|N µ(d)|X|N/d, where µ

is the Möbius function.
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Theorem 1.10. Let f0, f1 be real-analytic vector fields on a neighborhood of 0 in Rd. System (1.12)
is small-state-STLC with real-valued controls u0, u1 if and only if LieR(f0, f1)(0) = Rd.

To underline the similarity between Theorems 1.9 and 1.10, we will give a proof of both relying
on the same underlying abstract result Proposition 5.5.

1.3.2 Arbitrary order (R+,C) splitting methods

In [9, Remark 2.7], it is mentioned that the existence of splitting methods with (R+,C) coefficients
is an open question. We provide here the following positive answer.

Theorem 1.11. For every N ∈ N∗, there exists an (R+,C) splitting method of order N with a
number of flows at most NN dim(LN (X)).

Theorem 1.11 is therefore an arbitrary order extension of the lower order methods recalled in
Section 1.1. It is however an abstract existence result, and the proof that we give is not constructive.

An (R+,C) splitting method corresponds to a trajectory of the scalar-input control-affine
system (1.5) with state x(t) ∈ Cd and control u : R+ → C, where u is a finite sum of Dirac
masses with complex amplitudes. The following control statement is the analogue of Theorem 1.11
for the control system (1.5).

Theorem 1.12. Let f0, f1 be holomorphic vector fields on a neighborhood of 0 in Cd with f0(0) = 0.
System (1.5) is small-state-STLC with complex-valued control u if and only if Cd = LieC(f0, f1)(0).

For control theorists, Theorem 1.12 can be unsettling at first sight. Indeed, for control-affine
systems with drift of the form (1.5), no necessary and sufficient condition for controllability is
known, when one considers real-valued controls. In particular, the Lie algebra rank condition does
not imply the controllability as can be checked on the epitomal example on R2 given by{

ẋ1 = u

ẋ2 = x21
(1.13)

for which f1(0) = (1, 0) and [f1, [f1, f0]](0) = (0, 2), so that Lie(f0, f1)(0) = R2 but, for real-valued
u, x1 ∈ R so ẋ2 ≥ 0, preventing controllability, since one cannot reach a target state with x∗2 < 0
starting from the initial state (0, 0).

Theorem 1.12 is nevertheless reasonable, since, as in (1.13), all known obstructions to controllability
rely on the presence of positive drifts in the dynamics (see [7] for an extended explanation). In
particular, one easily checks that (1.13) is indeed controllable with complex-valued controls using
that i2 = −1.

Theorem 1.12 can be seen as a consequence of Sussmann’s S(θ) sufficient condition for STLC
of [58] (see Proposition 8.2 below). In this article, we prefer to adapt Sussmann’s proof to this
complex-valued context to emphasize that it becomes simpler and that no compensation needs to
be done (unlike in Proposition 8.2). Moreover, to underline the similarity between Theorems 1.11
and 1.12, we will give a proof of both relying on the same underlying abstract result Proposition 6.4.

1.3.3 The first obstruction to controllability and (R+,R) splitting methods

It is well-known that splitting methods with (R+,R) coefficients suffer from severe order limitations.
In particular, one has the following result (see e.g. [8]).

Theorem 1.13. The maximal order of an (R+,R) splitting method is 2.

We claim in the sequel that the cause of this order restriction is the positive-definiteness of the
coordinate associated with the “bad” bracket W1 = (X1, (X1, X0)) for the free system (3.1), and
that this is linked with well-known obstructions to controllability.
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An (R+,R) splitting method corresponds to a trajectory of the control system (1.5) with
state x(t) ∈ Rd and control u : R+ → R, where u is a finite sum of Dirac masses with real
amplitudes. In control theory, the following result, due to Sussmann [57, Proposition 6.3] (see also
[7, Theorem 1.10] for a modern proof using the Magnus formula and denying small-state-STLC) is
the first necessary condition for controllability.

Theorem 1.14. Let f0, f1 be smooth vector fields on a neighborhood of 0 ∈ Rd such that f0(0) = 0.
If the system (1.5) is small-state-STLC then fW1

(0) ∈ span{fMν
(0); ν ∈ N}.

An analog of Theorem 1.14 for splitting methods is the following result.

Theorem 1.15. Let f0, f1 be smooth vector fields on Rd. If there exists an (R+,R) splitting
method of order 3 relative to (f0, f1), then fW1

and fM2
are linearly dependent.

The slight difference in the compensation conditions between Theorem 1.14 and Theorem 1.15
can be explained in the following way. On the one hand, small-state-STLC is concerned with a
regime where the control u is small, and the amplitude of the movement of the state in the direction
of fW1(0) is quadratic in u, whereas the movements along the fMν (0) are linear in u, so that all
such terms are equally capable of absorbing the drift associated with W1. On the other hand,
in Definition 1.5, a splitting method uses coefficients which are independent of the time T , hence
compensations must occur between brackets of the same total length, and the only other bracket
of length 3 is M2 = ((X1, X0), X0). If the coefficients were allowed to depend in a polynomial way
on T , the condition could involve fW1 and {fMν ; ν ≤ 2}.

Another way to apprehend the fact that W1 is indeed the root cause of Theorem 1.13 is the
following result, which states that, if one is able to compute the flow of ±fW1

(in fact, one could
prove that the flow of −fW1

is sufficient), then one can overcome the order restriction. A splitting
method involving X0 and X1,W1 corresponds to a trajectory of the control system

ẋ(t) = f0(x(t)) + u1(t)f1(x(t)) + u2(t)fW1
(x(t)) (1.14)

with state x(t) ∈ Rd and control u = (u1, u2) : R+ → R2, where u1, u2 are finite sums of Dirac
masses with disjoint supports and real amplitudes.

Theorem 1.16. There exists an (R+,R) splitting method of order 4 involving X0 and X1,W1.

Such an observation was already made in [8, Section 5], in which an (R+,R+) splitting method,
involving X0 and X1,−W1 is constructed. We give here a proof relying on control theory, which
only gives an (R+,R) scheme, but can easily be adapted to prove the existence of higher order
schemes (see below). As in Theorem 1.11 above and Theorem 1.19 below, all our positive results
are non-constructive abstract existence results.

1.3.4 The next obstructions to controllability and splitting

The first obstruction W1 is far from being the only one. In fact, even in situations where the first
necessary conditions fW1(0) ∈ span{fMν (0); ν ∈ N} (for control theory) or fW1 and fM2 are linearly
dependent (for splitting) hold, or one incorporates the flow of fW1

, other obstructions occur. For
control theory, the first and third authors have started a classification of obstructions in [7]. We
refer the interested reader to this reference, and we will omit statements about controllability from
now on, although, as above, one could continue to exhibit a very direct correspondance between
both domains.

The next obstruction is caused by W2 = ad2(X1,X0)(X0) (a bracket of length 5, with 2 times X1

and 3 times X0). We will prove the following statements.

Theorem 1.17. Let f0, f1 be smooth vector fields on Rd such that fW1
= 0. If there exists an

(R∗,R) splitting method of order 5 relative to (f0, f1), then fW2 and fM4 are linearly dependent.
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Theorem 1.18. The maximal order of an (R+,R) splitting method involving X0 and X1,W1 is 4.

Theorem 1.19. There exists an (R+,R) splitting method involving X0 and X1,W1,W2 of order 6.

Theorem 1.18 yields a theoretical proof of the numerical observations of [8, Section 5].

As can be expected, the game goes on, and further obstructions exist at higher order. We refer
to Sections 7 and 8 for further results. In particular, our approach allows to prove that all the Wj

for j ∈ N∗ of (1.7) yield obstructions to splitting.

1.4 Structure of the article

The first sections introduce the appropriate prerequisites, which might already be well known or
folklore knowledge for readers accustomed to the field. In Section 2 we give prerequisites about
algebraic tools: free (Lie) algebras, Lie groups, Hall bases. In Section 3, we introduce formal
differential equations and some of their properties. In Section 4, we recall error estimates for the
Magnus expansion of solutions to ordinary nonlinear differential equations.

We then move on to the proofs of the main results. In Section 5, we investigate the (R,R)
case and prove Theorem 1.9 and Theorem 1.10. In Section 6, we investigate the (R+,C) case and
prove Theorem 1.11 and Theorem 1.12. In Section 7, we prove the statements concerning the
maximal possible order of (R+,R) methods. In Section 8, we prove the statements concerning the
existence of methods achieving the maximal possible order of (R+,R) methods using commutator
flows. Eventually, in Section 9, we prove the statements concerning the degeneracies implied by
the existence of methods with an order exceeding the maximal possible order.

2 Algebraic tools

In Section 2.1, we introduce several free algebras, that allow to define in Section 2.2 a Lie group,
and to study the formal differential equation in Section 3. Finally, in Section 2.3, we recall the
definition and an example of a Hall basis of L(X).

2.1 Free algebras

Let X = {X0, . . . , Xm} be a finite set of non commutative indeterminates and K = R or C, which
will serve as a base field for all vector spaces and algebras.

Definition 2.1 (Free algebra). A(X) denotes the free associative algebra generated by X over the
field K, i.e. the unital associative algebra of polynomials of the non commutative indeterminates
X0, . . . , Xm with coefficients in K. A(X) can be seen as a graded algebra:

A(X) =
⊕
n∈N

An(X), (2.1)

where An(X) is the finite-dimensional K-vector space spanned by monomials of degree n over X.
In particular A0(X) = K and A1(X) = spanK(X).

A(X) is endowed with a natural structure of Lie algebra, the Lie bracket operation being
defined by [a, b] := ab− ba. This operation satisfies [a, a] = 0 and the Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0. (2.2)

Definition 2.2 (Free Lie algebra). L(X) denotes the free Lie algebra generated by X over the
field K, which is defined as the Lie subalgebra generated by X in A(X). It can be seen as the
smallest linear subspace of A(X) containing all elements of X and stable by the Lie bracket.

There is a natural evaluation mapping e from the free magma Br(X) defined in Definition 1.1
to L(X), defined by e(Xi) = Xi for Xi ∈ X and e((b1, b2)) = [b1, b2] for b1, b2 ∈ Br(X).
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Definition 2.3 (Formal power series). Â(X) denotes the (unital associative) algebra of formal

power series generated by A(X). An element a ∈ Â(X) is a sequence a = (an)n∈N usually written
a =

∑
n∈N an, where an ∈ An(X) with, in particular, a0 ∈ K being its constant term. We also

define the Lie algebra of formal Lie series L̂(X) as the Lie algebra of formal power series a ∈ Â(X)
for which an ∈ L(X) for each n ∈ N.

For S ∈ A(X) with null constant term,

exp(S) :=

∞∑
k=0

Sk

k!
and log(1 + S) =

∞∑
k=1

(−1)k+1

k
Sk (2.3)

are well defined elements of Â(X). Moreover, the following identities hold in Â(X):

exp(log(1 + S)) = 1 + S and log(exp(S)) = S. (2.4)

Definition 2.4 (Free nilpotent algebra). For N ∈ N,

AN (X) :=
⊕

n∈J0,NK

An(X), (2.5)

is a linear subspace of A(X), which is not a subalgebra of A(X). Let πN : Â(X) → AN (X) be
the canonical surjection (truncation map). The space AN (X) can be given a structure of algebra
by defining the multiplication of two elements a, b ∈ AN (X) by πN (ab) i.e. the multiplication on
AN (X) is the same as on A(X) except that monomials of degree > N are discarded. Then πN is
a morphism of algebras:

∀S, S′ ∈ Â(X), πN (SS′) = πN (S)πN (S′). (2.6)

Thus regarded, AN (X) is the free nilpotent associative algebra of order (N + 1), generated by X
over the field K and the Lie subalgebra of AN (X) spanned by X is

LN (X) := πN (L(X)). (2.7)

For S ∈ AN (X) with null constant term,

expN (S) := πN (exp(S)) and logN (1 + S) := πN (log(1 + S)) (2.8)

are well defined elements of AN (X). Moreover, the following identities hold in AN (X):

expN (logN (1 + S)) = 1 + S and logN (expN (S)) = S (2.9)

and for every S ∈ Â(X),
logN (πN (S)) = πN (log(S)). (2.10)

2.2 A Lie group

We recall the celebrated Baker–Campbell–Hausdorff formula and its corollary onAN (X), consequence
of (2.10).

Proposition 2.5. There exists a Lie series BCH(A,B) in two indeterminates A,B such that, for

every P,Q ∈ Â(X) with null constant terms, the following identity holds in Â(X):

exp(P ) exp(Q) = exp(BCH(P,Q)). (2.11)

For N ∈ N and P,Q ∈ AN (X) with null constant terms, the following identity holds in AN (X):

expN (P ) expN (Q) = expN (BCHN (P,Q)) (2.12)

where BCHN (P,Q) = πN (BCH(P,Q)) ∈ LN (X).
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Example 2.6. The formula up to order 3 is

BCH(A,B) = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] + · · · (2.13)

In particular, Proposition 2.5 implies that the sets

Ĝ(X) := {exp(Z);Z ∈ L̂(X)} and GN (X) := {expN (Z);Z ∈ LN (X)} (2.14)

are respectively subgroups of Â(X) and AN (X). The elements of Ĝ(X) are called exponential Lie
series.

Proposition 2.7. GN (X) is a Lie group, whose Lie algebra is LN (X) i.e. GN (X) is a group and
an analytic manifold, whose tangent space at 1 is LN (X).

2.3 A well-suited basis of the free Lie algebra

Designing a splitting method to compute the flow of f0+f1 is, initially, a symmetric question with
respect to f0 and f1. However, this symmetry breaks if one considers methods using only forward
flows of f0 (but both forward and backward flows of f1). The resulting asymmetry is reflected in
the formulation of the associated control-affine system (1.5). In order to identify the conditions
on f0 and f1 under which high-order splitting methods exist, this asymmetry must be taken into
account when choosing a basis of the free Lie algebra L(X).

The so-called (generalized) Hall bases (stemming from [32] and generalized in [56, 61]) constitute
a wide family of bases of L(X), which includes many well-known bases of L(X) such as the historical
length-compatible Hall bases of [32] or the Chen–Fox–Lyndon basis of [21]. We refer the interested
reader to [4, Section 1.4] for a more gentle introduction and more thorough details.

Definition 2.8. A Hall set over X is a subset B of Br(X) (see Definition 1.1), endowed with a
total order < such that:

� X ⊂ B,

� for all b1, b2 ∈ Br(X), (b1, b2) ∈ B if and only if b1, b2 ∈ B, b1 < b2 and, either b2 ∈ X or
b2 = (b3, b4) with b3 ≤ b1,

� for all b1, b2 ∈ B such that (b1, b2) ∈ B then b1 < (b1, b2).

The importance of this definition is linked with the following result.

Theorem 2.9 (Viennot [61]). Let B ⊂ Br(X) be a Hall set. Then e(B) is a basis of L(X).

In [7, Section 3], the first and third authors introduced a new Hall set B⋆, specifically designed
for applications to control theory, which correctly reflects the asymmetry between X0 and X1

corresponding to the control system (1.5). As we aim to illustrate in the following sections, this
basis is also useful in the context of splitting methods. Since we will not need the full Hall set B⋆ in
the sequel, we omit the precise definition of the underlying order (for which we refer to [7, Section
3]), and we instead list below its elements of length at most 5, in the order under which they
appear in B⋆:

X1 < M1 < M2 < M3 < M4

< W1 < (W1, X0) < ((W1, X0), X0) < W2

< (X1,W1) < ((X1,W1), X0) < ((X1, X0),W1)

< Q1

< X0

(2.15)
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where we use the notations of Definition 1.2 and

Q1 := (X1, (X1, (X1, (X1, X0)))) = ad4X1
(X0). (2.16)

Although the 14 elements of (2.15) will be sufficient for our purpose here, the structure of the
elements of B⋆ is understood and easily computable for many more elements. In particular, it
contains all the elements of the form Mν for ν ∈ N and Wj for j ∈ N∗ defined in Definition 1.2.

3 The formal differential equation

3.1 The classical framework: integrable controls

3.1.1 An equation on Â(X)

Let u = (u0, . . . , um) ∈ L1(R+,Km+1) . In this section, we consider the following formal differential

equation set on Â(X) {
Ṡ(t) = S(t)

∑m
j=0 uj(t)Xj ,

S(0) = 1,
(3.1)

whose solutions are defined in the following way.

Definition 3.1 (Solution to a formal differential equation). Let u = (u0, . . . , um) ∈ L1(R+;Km+1).
The solution to the formal differential equation (3.1) is the formal-series valued function S : R+ →
Â(X), whose homogeneous components Sn : R+ → An(X) are the unique continuous functions that
satisfy, for every t ≥ 0, S0(t) = 1 and, for every n ∈ N∗,

Sn(t) =

∫ t

0

Sn−1(τ)

m∑
j=0

uj(τ)Xj dτ. (3.2)

We denote by Ser(t,X, u) this solution.

Iterating this integral formula yields a power series expansion of Ser(t,X, u) in Â(X) called the
Chen series, [19, 20] and popularized in control theory by [28]. In this work, we will instead mostly
work with the logarithm of the flow, using the Magnus formula.

For instance, if the uj are piecewise constant functions with disjoint supports, then Ser(t,X, u)
takes the following form, where t1, . . . , tk ∈ R,

exp(t1Xj1) exp(t2Xj2) . . . exp(tkXjk).

The aim of the next proposition is to list the properties of the map Ser(·, X, ·) that we will be
using in this article. We will then need the following definitions.

Definition 3.2 (Concatenation of functions). For u ∈ L1((0, T ),K) and ũ ∈ L1((0, T̃ ),K), we

denote by u ⋄ ũ : (0, T + T̃ ) → K their concatenation

(u ⋄ ũ)(t) :=

{
u(t) if t ∈ (0, T ),

ũ(t− T ) if t ∈ (T, T̃ ).
(3.3)

Definition 3.3 (Monomial basis of L(X)). A monomial basis of L(X) is a basis of L(X) whose
elements are iterated Lie brackets of elements of X (evaluations through e of elements of Br(X)).

Proposition 3.4. The following hold:
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1. For all u ∈ L1((0, T ),Km+1) and ũ ∈ L1((0, T̃ ),Km+1) the following equality holds in Â(X)

Ser(T + T̃ ,X, u ⋄ ũ) = Ser(T,X, u) Ser(T̃ ,X, ũ). (3.4)

2. For any u ∈ L1(R+,Km+1) and t > 0, Ser(t,X, u) is an exponential Lie series : Ser(t,X, u) ∈
Ĝ(X) i.e. Ser(t,X, u) = eZ(t,X,u) where

Z(t,X, u) := log(Ser(t,X, u)) ∈ L̂(X). (3.5)

3. If B is a monomial basis of L(X), there exists a unique set of functionals (ζb)b∈B, with
ζb : R+ × L1(R+,Km+1) → K, such that, for every u ∈ L1(R+,Km+1),

Z(t,X, u) =
∑
b∈B

ζb(t, u)b. (3.6)

These functionals are called coordinates of the first kind associated to the basis B.

4. The coordinates of the first kind enjoy the following homogeneity. Let ū : (0, T ) → Km+1.
For ε > 0, let uε : t ∈ (0, εT ) 7→ ū(t/ε). Then, for every b ∈ B,

ζb(εT, u
ε) = ε|b|ζb(1, ū). (3.7)

For λ0, . . . , λm ∈ K, let uλ := (λ0ū0, . . . , λmūm). Then, for every b ∈ B,

ζb(T, u) = λ
n0(b)
0 · · ·λnm(b)

m ζb(T, ū), (3.8)

where the nj(b) are defined in Definition 1.1.

Proof of Proposition 3.4. The first statement is a consequence of the uniqueness, for any initial
condition in Â(X), of the solution of the formal differential equation (3.1). The second statement
is a consequence of the Baker–Campbell–Hausdorff formula (see Proposition 2.5) when u is a
piecewise constant function. In the general case u ∈ L1(R+,Km+1), the Magnus formula gives the
result, see for instance [5, Section 2.3]. The homogeneity of the coordinates of the first kind follows
from (3.2).

3.1.2 An equation on AN (X)

Equation (3.1) can also be considered as a differential equation on AN (X). Then its solution is

SerN (t,X, u) := πN (Ser(t,X, u)) . (3.9)

For instance, if the uj are piecewise constant functions with disjoint supports, then SerN (t,X, u)
takes the following form, where t1, . . . , tk ∈ R,

expN (t1Xj1) . . . expN (tkXjk).

The map SerN (·, X, ·) has the following properties.

Proposition 3.5. The following hold:

1. For all u ∈ L1((0, T ),Km+1) and ũ ∈ L1((0, T̃ ),Km+1) the following equality holds in AN (X)

SerN (T + T̃ ,X, u ⋄ ũ) = SerN (T,X, u) SerN (T̃ ,X, ũ). (3.10)

2. For every u ∈ L1(R+,K) and t > 0, SerN (t,X, u) ∈ GN (X). More precisely, SerN (t,X, u) =
expN (ZN (t,X, u)) where

ZN (t,X, u) := πNZ(t,X, u) ∈ LN (X) (3.11)
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3. If B is a monomial basis of L(X), then, for every u ∈ L1(R+,Km+1),

ZN (t,X, u) =
∑
b∈BN

ζb(t, u)b where BN := {b ∈ B; |b| ≤ N} (3.12)

Proof. The first statement is a consequence of the first statement of Proposition 3.4 and identity (2.6).
The second statement is a consequence of the formula (2.10) applied to S = Ser(t,X, u).

3.2 A new framework: Dirac controls

Let X = {X0, X1}, m ∈ N∗, c1, . . . , cm ∈ Br(X). We consider the formal differential equation{
Ṡ(t) = S(t)

(
X0 +

∑m
j=1 uj(t)cj

)
,

S(0) = 1.
(3.13)

3.2.1 An equation on Â(X)

As in the previous section, if u := (u1, . . . , um) ∈ L1(R+,Km), there exists a unique classical
solution whose homogeneous components are continuous. We denote it by Ser(t,X, u). Our goal
is to consider controls u1, . . . , um that are finite sums of Dirac masses with (two by two) disjoint
supports and real amplitudes. To simplify notations, we denote by U the set of such controls
u = (u1, . . . , um).

Definition 3.6 (Solution to (3.13)). Let u ∈ U with uj =
∑n
k=1 a

j
kδτj

k
. For ε > 0, we define uε :=

(
∑n
k=1 a

j
k1[τj

k ,τ
j
k+ε]

)1≤j≤m ∈ L1(R+,Rm). The solution to the formal differential equation (3.13) is

the formal series valued map S : R+ → Â(X) whose homogeneous components Sn : R+ → An(X)
are the limit as ε→ 0 of the ones of Ser(t,X, uε). We denote it Ser(t,X, u).

There is no ambiguity in this definition because the supports of the uj are (two by two) disjoint.
For instance, if we consider the formal differential equation{

Ṡ(t) = S(t) (X0 + u1(t)X1 + u2(t)W1) ,

S(0) = 1,
(3.14)

and the controls u1 = 7δ3 and u2 = 8δ5 then the solution is

Ser(t,X, u) =

 exp(tX0) if t ∈ (0, 3)
exp((t− 3)X0) exp(7X1) exp(3X0) if t ∈ (3, 5)
exp((t− 5)X0) exp(8W1) exp(2X0) exp(7X1) exp(3X0) if t ∈ (5,∞).

Proposition 3.7. The following hold:

1. If u, ũ ∈ U , supp(u) ⊂ [0, T ] and supp(ũ) ⊂ [0, T̃ ] then

Ser(T + T̃ ,X, u ⋄ ũ) = Ser(T,X, u) Ser(T̃ ,X, ũ). (3.15)

2. If u ∈ U and t > 0, Ser(t,X, u) is an exponential Lie series : Ser(t,X, u) ∈ Ĝ(X) i.e.

Ser(t,X, u) = eZ(t,X,u) where Z(t,X, u) := log(Ser(t,X, u)) ∈ L̂(X).

3. If B is a monomial basis of L(X), there exists a unique set of functionals (ζb)b∈B, with
ζb : R+ × U → K, such that, for every u ∈ U , Z(t,X, u) =

∑
b∈B ζb(t, u)b. These functionals

are called coordinates of the first kind associated to the basis B.

4. If m = 1 and c1 = X1, they have the same homogeneity properties as in Proposition 3.4.

Proof. When u, ũ ∈ L1(R+,Km+1) then (3.15) results from the uniqueness of the solution of the
Cauchy problem. When u, ũ ∈ U then (3.15) is obtained by passing to the limit ε → 0 (see
(3.13)). The second statement is a consequence of the Baker–Campbell–Hausdorff formula (see
Proposition 2.5).
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3.2.2 An equation on AN (X)

Equation (3.13) can also be considered as a differential equation on AN (X). Then its solution is
SerN (t,X, u) := πN (Ser(t,X, u)).

For instance, if we consider the formal differential equation (3.14) with the controls u1 = 7δ3
and u2 = 8δ5 then the solution is

SerN (t,X, u) =


expN (tX0) if t ∈ (0, 3)

expN ((t− 3)X0) expN (7X1) expN (3X0) if t ∈ (3, 5)

expN ((t− 5)X0) expN (8W1) expN (2X0) expN (7X1) expN (3X0) if t ∈ (5,∞).

Proposition 3.8. 1. If u, ũ ∈ U , supp(u) ⊂ [0, T ] and supp(ũ) ⊂ [0, T̃ ] then

SerN (T + T̃ ,X, u ⋄ ũ) = SerN (T,X, u) SerN (T̃ ,X, ũ). (3.16)

2. If u ∈ U and t > 0, SerN (t,X, u) ∈ GN (X). Moreover SerN (t,X, u) = expN (ZN (t,X, u))
where ZN (t,X, u) = πNZ(t,X, u) ∈ LN (X).

3. If B is a monomial basis of L(X), then, for every u ∈ U , ZN (t,X, u) =
∑
b∈BN

ζb(t, u)b
where BN := {b ∈ B; |b| ≤ N}.

The proof is similar to that of Proposition 3.5.

3.3 Lazard elimination and coordinates of the second kind

In this section, we define a generalization of the well-known Lazard elimination process and
associated coordinates of the second kind, in the context of a multi-controlled system (3.17). Let
X = {X0, X1} and B ⊂ Br(X) is a Hall set with X0 maximal. Let C be a finite subset of B \{X0}.
We consider the formal differential equation{

Ṡ(t) = S(t)
(
X0 +

∑
c∈C uc(t)c

)
S(0) = 1

(3.17)

where the uc are real-valued controls. One could also say that X0 ∈ C with a fixed control uX0 ≡ 1.
Given b ∈ B, we denote in the following statements by P>b the projection on span{c ∈ B; c > b}

parrallel to span{c ∈ B; c ≤ b} in L(X).

Definition 3.9 (Coordinates of the second kind). The coordinates of the second kind associated
to the couple (B, C) is the unique family (ξb)b∈B of functionals R+ × L1 → R defined by induction
in the following way: for any u ∈ L1, t ≥ 0 and b ∈ B,

ξb(t, u) =
∑

⟨admr

br
P>br · · · ad

m1

b1
P>b1(c), b⟩B

∫ t

0

ξmr

br
(s, u) · · · ξm1

b1
(s, u)

mr! · · ·m1!
uc(s) ds, (3.18)

where the sum ranges over c ∈ C∪{X0} (with the convention that uX0
≡ 1), r ∈ N, m1, . . . ,mr ∈ N∗

and b1 < · · · < br < b ∈ B.

Remark 3.10. For any b ∈ B, the sum (3.18) is finite since ⟨admr

br
P>br · · · ad

m1

b1
P>b1(c), b⟩B ̸= 0

implies that mi|bi| < |b|.

Proposition 3.11. Let N ∈ N∗. For any u ∈ L1 and t ≥ 0, the solution to (3.17) satisfies

πN (S(t)) =

←∏
b∈BN

expN (ξb(t, u)b) (3.19)

where BN := {b ∈ B; |b| ≤ N}, and the terms in the product are ordered according to the order of
the Hall set B.
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Proof. This statement is analogous to well-known results concerning the case of a single control
uX1

(or of multiple controls in front of multiple independent letters Xi). We explain what needs
to be changed in the case of (3.17) when controls are placed in front of brackets of B (not only
letters). Write BN = {b1, . . . , bR} for some R = |BN | ≥ 2 and b1 < · · · < bR. Our goal is to prove

πN (S(t)) = expN (ξbR(t, u)bR) . . . expN (ξb1(t, u)b1).

We define S0 = S and, for j ≥ 1

Sj(t) = Sj−1(t) expN
(
ξbj (t, u)bj

)
. (3.20)

Let C0 := C ∪ {X0}. We check by induction on j ≥ 0 that, by (3.18),

Ṡj(t) = Sj(t)

 ∑
m1,...,mj∈N

∑
c∈C0

ξ
mj

bj
(t, u) · · · ξm1

b1
(t, u)

mj ! · · ·m1!
uc(t) · ad

mj

bj
P>bj · · · ad

m1

b1
P>b1(c)

 (3.21)

Thus, in particular, πNSR(t) = 1. Hence, πN (S(t)) is given by the finite product of exponentials
expN (ξbR(t, u)bR) · · · expN (ξb1(t, u)b1).

Remark 3.12. For L1 controls, the integrands in (3.18) are well-defined and the ξb are continuous
functions of time. For controls which are finite sums of Dirac masses with disjoint supports, it is
straightforward to check that the ξb will be piecewise continuous. Unfortunately, this is not sufficient
for the integrands in ξb to be well-defined, since the product ξmr

br
· · · ξm1

b1
could be discontinuous on a

Dirac mass of uc. Hence, one should choose a regularization and use it to compute the coordinates.
Their limit is unique because S(t) is well-defined for such controls and obtained as a limit of
regularizations, and by identification in (3.19).

Example 3.13. In our basis B⋆, for k ≥ 1, one has

ξMk
(t, u) =

∫ t

0

(
ξMk−1

(s, u) + uMk
(s)
)
ds. (3.22)

Moreover, if C does not involve {M1, . . . ,M2k−1},

ξWk
(t, u) =

∫ t

0

(
1

2
ξ2Mk−1

(s, u) + uWk
(s)

)
ds. (3.23)

3.4 Coordinates of the first and second kind are diffeomorphic

Proposition 3.14. Let N ∈ N∗ and d := dim(LN (X)). There exists a global diffeomorphism Φ of
Rd such that, for every t > 0 and u ∈ U , (ζb(t, u))b∈BN = Φ((ξb(t, u))b∈BN ). More precisely, for
every b ∈ B, there exists a polynomial Pb such that

ζb(t, u) = ξb(t, u) + Pb((ξb′(t, u))|b′|<|b|), (3.24)

where Pb only involves elements b′ ∈ Br(X) such that ni(b
′) ≤ ni(b) with i ∈ {0, 1, . . . ,m} (with at

least one strict inequality).

Proof. We apply the Baker–Campbell–Hausdorff formula (see Proposition 2.5) to the product

←∏
b∈BN

expN (ξb(t, u)b) = SerN (t,X, u) = expN

(∑
b∈BN

ζb(t, u)b

)
.
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For example, the first terms of the BCH formula (2.13) prove the following explicit expressions,
that will be used in Section 7.1: ζX0

(t, u) = ξX0
(t, u), ζX1

(t, u) = ξX1
(t, u) and

ζM1
(t, u) = ξM1

(t, u)− 1

2
ξX0

(t, u)ξX1
(t, u),

ζM2
(t, u) = ξM2

(t, u)− 1

2
ξX0

(t, u)ξM1
(t, u) +

1

12
ξX0

(t, u)2ξX1
(t, u),

ζW1
(t, u) = ξW1

(t, u)− 1

2
ξM1

(t, u)ξX1
(t, u) +

1

12
ξX1

(t, u)2ξX0
(t, u).

(3.25)

More generally, for every n ∈ N∗, there exists real numbers γj,k ∈ R such that

ζWn
(t, u) = ξWn

(t, u) +
∑
j,k∈N

j+k≤2n−1

γj,kξMj
(t, u)ξMk

(t, u)ξX0
(t, u)2n−1−j−k.

4 Error estimates for the Magnus formula

4.1 Affine systems with integrable controls

In this section, we consider the control system

ẋ(t) =

m∑
j=0

uj(t)fj(x(t)) (4.1)

where m ∈ N∗, u = (u0, . . . , um) ∈ L1(R+,Km+1), f0, . . . , fm are vector fields on Kd. When well
defined, the solution associated to the initial condition x(0) = p is denoted x(t; f, u, p).

Definition 4.1 (ZN (t, f, u) for u ∈ L1). Let t > 0 and u = (u0, . . . , um) ∈ L1(R+,Km+1). For
f0, . . . , fm ∈ C∞(Kd,Kd), we define

ZN (t, f, u) := Evf (ZN (t,X, u))

where Evf : L(X) → C∞(Kd,Kd) is the unique morphism of Lie algebras such that Evf (Xj) = fj
for j = 0, . . . ,m and ZN (t,X, u) is defined in Proposition 3.5. If B is a monomial basis of L(X),
then

ZN (t, f, u) =
∑
b∈BN

ζb(t, u)fb

where the ζb are the coordinates of the first kind defined in Proposition 3.4. This definition can be
extended to CN vector fields on Kd defined locally and then ZN (t, f, u) is a C1 vector field defined
locally.

The following estimate is proved in [5, Proposition 93].

Proposition 4.2. Let p ∈ Kd. For any r > 0, Br denotes the open ball BKd(p, r). For every
N ∈ N, there exists δN , CN > 0 such that, for every δ > 0, T > 0, u ∈ L1((0, T ),Km+1),

f0, . . . , fm ∈ CN2

(B2δ,Kd) with ρ :=
∑m
j=0 ∥uj∥L1∥fj∥CN2 ≤ δN min{1; δ}, and t ∈ [0, T ],∣∣∣x(t; f, u, p)− eZN (t,f,u)p

∣∣∣ ≤ CNρ
N+1. (4.2)

The following estimate is an immediate consequence of Proposition 4.2 (see [5, Proposition 161]
for a proof). Here, Br denotes a ball centered at 0.
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Proposition 4.3. Let N ∈ N∗ and f0 . . . , fm be CM2

vector fields on Kd defined on an open
neighborhood of 0. The following estimate holds, as T → 0,

x(T ; f, u, 0) = ZN (T, f, u)(0) +O
(
TN+1 + T |x(T ; f, u, 0)|

)
. (4.3)

in the following sense: there exist C, η > 0 such that, for every T ∈ (0, η] and u ∈ L∞((0, T );Km+1)
with ∥u∥L∞ ≤ 1,

|x(T ; f, u, 0)− ZN (T, f, u)(0)| ≤ C
(
TN+1 + T |x(T ; f, u, 0)|

)
. (4.4)

4.2 Affine systems with Dirac controls

Let X = {X0, X1}, m, d ∈ N∗, c1, . . . , cm ∈ Br(X) and f0, f1 be smooth vector fields on Kd. In
this section, we consider systems of the form

ẋ(t) = f0(x(t)) +

m∑
j=1

uj(t)fcj (x(t)) (4.5)

with state x(t) ∈ Kd and control u = (u1, . . . , um).
For a given p ∈ Rd, if T > 0 and u ∈ L1((0, T ),Km) are small enough, there exists a unique

classical solution x ∈ C0((0, T ),Kd), associated with the initial condition x(0) = p. We denote it
by x(t; f, u, p).

Our goal is to consider u1, . . . , um that are finite sums of Dirac masses with (two by two)
disjoint supports and amplitudes in K. To simplify notations, we denote by U the set of such
controls u = (u1, . . . , um) and ∥u∥U :=

∑k
j=1 |aj | when u =

∑k
j=1 ajδτj with aj ∈ Km.

Definition 4.4. Let u ∈ U with uj =
∑n
k=1 a

j
kδτj

k
. For ε > 0, we define the regularization

uε := (
∑n
k=1 a

j
k1[τj

k ,τ
j
k+ε]

)1≤j≤m ∈ L1(R+,R). Let p ∈ Rd. The solution to (4.5) associated with

the initial condition x(0) = p is the limit as ε→ 0 of x(t; f, uε, p).

For instance, if we consider the formal differential equation

ẋ = f0(x) + u1f1(x) + u2fW1
(x),

and the controls u1 = 7δ3 and u2 = 8δ5 then the solution is

x(t; f, u, p) =


etf0p if t ∈ (0, 3)
e(t−3)f0e7f1e3f0p if t ∈ (3, 5)
e(t−5)f0e8fW1 e2f0e7f1e3f0p if t ∈ (5,∞)

provided each flow is well defined.

Definition 4.5 (ZN (t, f, u) for u ∈ U). Let t > 0 and u ∈ U . For f0, f1 ∈ C∞(Kd,Kd), we define

ZN (t, f, u) := Evf (ZN (t,X, u))

where Evf : L(X) → C∞(Kd,Kd) is the unique morphism of Lie algebras such that Evf (Xj) = fj
for j = 0, 1 and ZN (t,X, u) is defined in Proposition 3.8. If B is a monomial basis of L(X), then

ZN (t, f, u) =
∑
b∈BN

ζb(t, u)fb

where the ζb are the coordinates of the first kind defined in Proposition 3.8. This definition can be
extended to CN vector fields on Kd defined locally and then ZN (t, f, u) is a C1 vector field defined
locally.

17



Proposition 4.6. Let p ∈ Rd. For any r > 0, Br denotes the open ball BKd(p, r). For every

N ∈ N, there exists δN , CN > 0 such that, for every δ > 0, T > 0, u ∈ U , f0, f1 ∈ CN2

(B2δ,Kd)
with ρ := (T + ∥u∥U )∥f∥CN2 ≤ δN min{1; δ}, and t ∈ [0, T ],∣∣∣x(t; f, u, p)− eZN (t,f,u)p

∣∣∣ ≤ CNρ
N+1. (4.6)

Proof. We consider the sequence uε ∈ L1((0, T ),Rm) as in Definition 4.4. They satisfy ∥uε∥L1 =
∥u∥U . By the previous section, the estimate holds for uε. We pass to the limit ε→ 0 to conclude.

The following estimate is an immediate consequence of Proposition 4.6. Here, Br denotes a
ball centered at 0.

Proposition 4.7. Let N ∈ N∗ and f0, f1 be CN
2

vector fields on Kd defined on an open neighborhood
of 0. The following estimate holds, as T → 0,

x(T ; f, u, 0) = ZN (T, f, u)(0) +O
(
(T + ∥u∥U )N+1 + (T + ∥u∥U )|x(T ; f, u, 0)|

)
(4.7)

in the following sense: there exist C, η > 0 such that, for every T ∈ (0, η] and u ∈ U with ∥u∥U ≤ 1,

|x(T ; f, u, 0)− ZN (T, f, u)(0)| ≤ C
(
(T + ∥u∥U )N+1 + (T + ∥u∥U )|x(T ; f, u, 0)|

)
. (4.8)

5 High-order theory with unsigned coefficients

5.1 Prerequisite: accessibility

Theorem 5.1. Let d ∈ N∗, M be an analytic submanifold of dimension d and x0 ∈ M. Let
m ∈ N∗ and f0, . . . , fm be analytic vector fields on M such that L(f0, . . . , fm)(x0) = Tx0M. There
exists j1, . . . , jd ∈ {0, . . . ,m} and t0 ∈ (0,∞)d such that the differential at t0 of the map

F :

{
Rd → M,

t = (t1, . . . , td) 7→ etdfjd · · · et1fj1 (x0).
(5.1)

has rank d. Moreover, j1 can be any element of {0, . . . ,m} such that fj1(x0) ̸= 0, and t0 can be
arbitrary small.

Proof. If M = Rd, the first statement is proved in [24, Theorem 3.19] for C∞ vector fields. Then
one obtains t∗ ∈ Rd such that det(DF (t∗)) ̸= 0. If the vector fields are analytic, then the map
t 7→ det(DF (t)) is analytic not identically zero. Thus, for every δ > 0, there exists t0 ∈ (0, δ)k such
that det(DF (t0)) ̸= 0. Finally, if M is an analytic manifold, we conclude with a local map.

This theorem applies in particular to the formal differential equation on AN (X) with M =
GN (X) and fj(S) = SXj for j = 0, . . . ,m, x0 = 1 which gives the following statement.

Proposition 5.2. Let N,m ∈ N∗, X = {X0, . . . , Xm} and k := dim(LN (X)). There exist
j1, . . . , jk ∈ {0, . . . ,m} and t0 ∈ (0,∞)k such that the differential at t0 of the map

Rk → GN (X)
t = (t1, . . . , tk) 7→ expN (t1Xj1) . . . expN (tkXjk).

has rank equal to the dimension of GN (X). Moreover, j1 can be any element of {0, . . . ,m} and t0

can be arbitrary small.
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5.2 An improved local inversion on GN(X)

In this section, N ∈ N∗ is fixed. For k ∈ N∗, we define the map

νNk : Rk 7→ GN (X)
t = (t1, . . . , tk) 7→ expN (t1X0) expN (t2X1) expN (t3X0) . . . expN (tkXϵk)

where ϵk := 0 if k is odd, 1 if k is even.

Definition 5.3 (ut). For every t ∈ Rk, there exist unique piecewise constant controls with disjoint
supports ut0, u

t
1 : (0, |t|) → {−1, 0, 1} such that νNk (t) = SerN (|t|, X, ut) where ut := (ut0, u

t
1), and

thus logN (νNk (t)) = ZN (|t|, X, ut) (see Section 3.1).

Definition 5.4 (Good element of GN (X)). A element S ∈ GN (X) is good if there exists k ∈ N∗
and t0 = (t01, . . . , t

0
k) ∈ Rk, such that, νNk (t0) = S and dνNk (t0) has rank equal to the dimension of

GN (X).

Then by the inverse mapping theorem, there exists an open neighborhood of S in GN (X) on
which νNk has a C1 right inverse. In other words, there exists a neighborhood Ω of Z := logN (S) in
LN (X) and a C1 map ψ : Ω → Rk such that, for every Z ′ ∈ Ω, Z ′ = ZN (|t|, X, ut) for t = ψ(Z ′).

By Definition 5.4 and Proposition 3.5, if S is a good element of GN (X) then any element of
GN (X) obtained from S by right-multiplication with an element of the form νNk′,v′(t

′) is also a

good element of GN (X).

Proposition 5.5. 1 is a good element of GN (X). Moreover, Definition 5.4 holds with k =
2dim(LN (X))− 1.

Proof. Proposition 5.2 with K = R provides t0 = (t01, . . . , t
0
k) ∈ (0,∞)k with k := dim(LN (X))

such that νNk (t0) be a good element of GN (X). Let t ∈ R2k−1 be defined by

t = (t01, t
0
2, . . . , t

0
k + (−1)k+1t0k, . . . ,−t02, t01),

i.e. ut : (0, 2T ) → R is the concatenation of ut
0

and −ǔt0 , with T := |t0|. By uniqueness of the
solution of the formal differential equation on AN (X), it satisfies S(T + t) = S(T − t) for every t ∈
(0, T ), in particular S(2T ) = S(0) = 1 i.e. νN2k−1(t) = 1. Moreover νN2k−1(t) = νNk (t0) SerN (T,−ǔt0)
thus 1 is a good element of GN (X).

5.3 Arbitrary order splitting methods with real-valued coefficients

The goal of this section is to prove Theorem 1.9. By Proposition 4.2, it suffices to prove the
following statement.

Theorem 5.6. Let X = {X0, X1}, K = R, N ∈ N∗ and k := dim(LN (X)). There exist
α1, . . . , αk, β1, . . . , βk−1 ∈ R such that the following equality holds in GN (X)

expN (X0 +X1) = expN (α1X0) expN (β1X1) . . . expN (βk−1X1) expN (αkX0). (5.2)

In other words, there exist piecewise constant controls u0, u1 : (0, 1) → R with disjoint supports
such that ZN (1, X, u) = X0 +X1, where ZN is defined in Proposition 3.5 and u = (u0, u1).

Proof. By Proposition 5.5, there exist a neighborhood Ω of 0 in LN (X) and a C1 map ψ : Ω →
R2k−1 such that, for every Z ∈ Ω, ZN (|ψ(Z)|, X, uψ(Z)) = Z. For η > 0 small enough, η(X0+X1) ∈
Ω. Let t := ψ(η(X0+X1)) = (t1, . . . , t2k−1) ∈ R2k−1. Then the following equality holds in AN (X)

expN (η(X0 +X1)) = expN (t1X0) expN (t2X1) . . . expN (t2k−2X1) expN (t2k−1X0).

By homogeneity, this gives the conclusion with αj := t2j−1/η and βj := t2j/η.
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5.4 Chow’s theorem for control

We prove the implication of Theorem 1.10 stating that the Lie algebra rank condition implies
controllability (precised in Proposition 5.7), to emphasize that it relies on the same argument
(Proposition 5.5) as Theorem 1.9. For the other implication (that controllability implies the
Lie algebra rank condition), see e.g. [24, Theorem 3.17] for a modern reference. In particular,
analyticity is not required for Proposition 5.7 (but it is required for the other implication of
Theorem 1.10).

Proposition 5.7. Let f0, f1 be smooth vector fields on a neighborhood of 0 in Rd such that
LieR(f0, f1)(0) = Rd. Then, for every δ > 0, there exists r > 0 such that, for every x∗ ∈ BRd(0, r),
there exists T ∈ (0, δ) and u0, u1 : (0, T ) → {−1, 0, 1} piecewise constant with disjoint support such
that x(T ; f, u, 0) = x∗ for u = (u0, u1).

Proof. Let δ > 0. By the Lie algebra rank condition, there exist b1 . . . , bd ∈ Br(X) such that
(fb1(0), . . . , fbd(0)) be a basis of Rd. Let N := max{|bj |; j ∈ J1, dK} and k := 2 dim(LN (X)) − 1.
Let C, η be given by Proposition 4.3. One may assume δ < η.

Let t0 ∈ Rk be given by Proposition 5.5. By the inverse mapping theorem, there exist an open
neighborhood Ω of 0 in LN (X), an open neighborhood T of t0 in (0,∞)k and a C1-map ψ : Ω → T
such that, for every Z ∈ Ω, ZN (|ψ(Z)|, X, uψ(Z)) = Z. One may assume Ω and T small enough so
that |ψ(Z)| ≤ 2|t0| for every Z ∈ Ω.

There exists ρ∗ > 0 such that, for every ρ = (ρ1, . . . , ρd) ∈ BRd(0, ρ∗), we have
∑d
j=1 ρjbj ∈ Ω

and then tρ := ψ(
∑d
j=1 ρjbj) satisfies |tρ| ≤ 2|t0| and ZN (|tρ|, X, utρ) =

∑d
j=1 ρjbj .

For ρ ∈ BRd(0, ρ∗) and ε > 0, we define

u
tρ
ε : (0, ε|tρ|) → {−1, 0, 1}2

t 7→ utρ
(
t
ε

)
.

Then, using the homogeneity of the coordinates of the first kind (see Item 4 of Proposition 3.4),

ZN (ε|tρ|, X, utρε ) =
d∑
j=1

ρjε
|bj |bj . (5.3)

We introduce

α ∈
(

1

N + 1
,
1

N

)
, C ′ := max


d∑
j=1

|ωj ||fbj (0)|;
d∑
j=1

ωjfbj (0) ∈ Sd−1
 (5.4)

r := min

{
1;

(
ρ∗

C ′

) 1
1−αN

;

(
δ

2|t0|

) 1
α

}
. (5.5)

For z = |z|
∑d
j=1 ωjfbj (0) ∈ BRd(0, r), we define ε(z) := |z|α and ρ(z) :=

∑d
j=1 |z|1−α|bj |ωjfbj (0)

(for z = 0, we take ρ(z) = 0 so that ρ be continuous). Then, by (5.4) and (5.5),

|ρ(z)| ≤ |z|1−αN
d∑
j=1

|ωj ||fbj (0)| ≤ r1−αNC ′ ≤ ρ∗ and ε(z)|tρ| ≤ 2rα|t0| ≤ δ.

Thus the control u
tρ(z)
ε(z) is well defined and its interval of definition is ⊂ (0, δ). To simplify the

notation we write Tz instead of ε(z)|tρ(z)| and uz instead of u
tρ(z)
ε(z) . Then by (5.3)

ZN (Tz, f, uz)(0) = z.
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Thus, by Proposition 4.3,

|x(Tz; f, uz, 0)− z| ≤ C
(
TN+1
z + Tz|x(Tz, f, uz, 0)|

)
≤ C

(
(2|z|α|t0|)N+1 + 2|t0||z|α|x(Tz, f, uz, 0)|

)
.

This proves there exists C ′′ > 0 and β > 1 such that, for every z ∈ BRd(0, ρ∗),

|x(Tz; f, uz, 0)− z| ≤ C ′|z|β .

Let r′ ∈ (0, r] be such that C ′′(r′)β < r′/2 and x∗ ∈ BRd(0, r′/2). Then, the continuous map

F : BRd(0, r′) → Rd
z 7→ z − x(Tz; f, uz, 0) + x∗

takes values in BRd(0, r′). By the Brouwer fixed point theorem, there exists z ∈ BRd(0, r′) such
that F (z) = z, i.e. x(Tz; f, uz, 0) = x∗.

6 Complex controls and complex splitting methods

We prove Theorems 1.11 and 1.12 thanks to the same key ingredient of Proposition 6.4.

6.1 An improved local inversion on GN(X)

In this section, X = {X0, X1}, K = C. L(X) is also a vector space over the field R. Let
LieR(X0, X1, iX1) be the Lie subalgebra of L(X) generated by {X0, X1, iX1} over the field R; it is
also an hyperplane of L(X):

L(X) = iRX0 ⊕ LieR(X0, X1, iX1).

In this section, N ∈ N∗ is fixed. LieNR (X0, X1, iX1) := πN LieR(X0, X1, iX1) is the Lie subalgebra
of LN (X) generated by {X0, X1, iX1} over R. It is also an hyperplane of LN (X):

LN (X) = iRX0 ⊕ LieNR (X0, X1, iX1).

The BCH formula proves that the set

GN (X) := {expN (Z);Z ∈ LieNR (X0, X1, iX1)}

is a subgroup of AN (X).

Proposition 6.1. GN (X) is a Lie group, i.e. a group and an analytic manifold, whose tangent
space at 1 is LieNR (X0, X1, iX1).

For k ∈ N∗ and v = (v2, v4, . . . , v2⌊ k2 ⌋
) ∈ U⌊ k2 ⌋, we define the map νNk,v : Rk → GN (X) by: for

every t = (t1, . . . , tk) ∈ Rk,

νNk,v(t) =

{
expN (t1X0) expN (t2v2X1) . . . expN (tkX0) if k is odd,
expN (t1X0) expN (t2v2X1) . . . expN (tkvkX0) if k is even.

Definition 6.2 (ut,v). For every t ∈ (0,∞)k and v ∈ U⌊ k2 ⌋, we have νNk,v(t) = SerN (|t|∗, ut,v)
where

|t|∗ :=
∑

2j−1≤k

t2j−1 and ut,v :=
∑
2j≤k

t2jv2jδτj where τ1 := t1 and τj+1 = τj + tj+1.

thus logN (νNk,v(t)) = ZN (|t|∗, X, ut,v) (see Section 3) and

|t|∗ + ∥ut,v∥U = |t|. (6.1)
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Definition 6.3 (Good element of GN (X)). A element S ∈ GN (X) is good if there exists k ∈ N∗,
v ∈ U⌊ k2 ⌋ and t0 = (t01, . . . , t

0
k) ∈ (0,∞)k, such that, νNk,v(t

0) = S and dνNk,v(t
0) has rank equal to

the dimension of GN (X).

Proposition 6.4. There exists T > 0 such that expN (TX0) is a good element of GN (X). Moreover,
Definition 6.3 holds with k ≤ NN dim(LieNR (X0, X1, iX1)), and |t0| can be arbitrary small.

Proof. We prove by induction on ℓ ∈ J1, N + 1K that there exists a good element S of GN (X) of
the form

S = expN (TX0 + Z) where T > 0 and Z ∈ LNℓ (X) := span{b ∈ Br(X); ℓ ≤ |b| ≤ N}, (6.2)

moreover Definition 6.3 holds with k ≤ N ℓ−1 dim(LieNR (X0, X1, iX1)) and |t0| arbitrary small. This
property for ℓ = N + 1 gives the conclusion.

Initialization for ℓ = 1. Theorem 5.1 implies that a good element S ∈ GN (X) exists. It is clearly
of the form (6.2) with ℓ = 1. It satisfies Definition 6.3 with k = dim(LieNR (X0, X1, iX1)) and |t0|
can be arbitrary small.

Heredity. Let ℓ ≥ 1. There exists a good element of S of GN (X) of the form S = expN (TX0 + Z)

where T > 0 and Z ∈ LNℓ (X). We introduce the notation

Z =

N−1∑
j=1

Zj where Zj ∈ span{b ∈ Br(X); ℓ ≤ |b| ≤ N,n1(b) = j}.

For p = 0, . . . , N − 1, we consider the unique morphism of algebra λp : AN (X) → AN (X) such
that λp(X0) = X0 and λp(X1) = ei2πp/NX1. Then

λp(S) = expN (TX0 + λp(Z)) where λp(Z) =

N−1∑
j=1

ei2πj
p
N Zj .

If S = νNk,v(t) then, using the homogeneity properties of Item 4 of Proposition 3.4, λp(S) = νNk,v′(t)

where v′ = ei2πp/Nv. Thus Sλ1(S) . . . λN−1(S) is a good element of GN (X) of the form νNNk,v′(t
′) for

some t′ ∈ (0,∞)Nk and v′ ∈ UN⌊ k2 ⌋. By the Baker–Campbell–Hausdorff formula (Proposition 2.5),

Sλ1(S) . . . λN−1(S) = expN (NTX0 + Z1 + Z2)

where

Z1 =

N∑
p=0

λp(Z) =

N∑
p=0

N−1∑
j=1

ei2πj
p
N Zj =

N−1∑
j=1

(
N−1∑
p=0

ei2πj
p
N

)
Zj = 0

and Z2 is a linear combination of iterated Lie brackets of X0 and the λj(Z) thus Z2 ∈ LNℓ+1(X).

6.2 Arbitrary order splitting methods with complex coefficients

The goal of this section is to prove Theorem 1.11. By Proposition 4.6, it suffices to prove the
following statement.

Theorem 6.5. There exist k ≤ NN dim(LieNR (X0, X1, iX1)) and coefficients α1, . . . , αk > 0 and
β1, . . . , βk ∈ C such that the equality (5.2) holds in GN (X). In other words, there exist a finite
sum u of Dirac masses on [0, 1] with complex amplitudes such that ZN (1, X, u) = X0 +X1, where
ZN is defined in Proposition 3.8.
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Proof of Theorem 6.5. Let T > 0, k, v given by Proposition 6.4. For η > 0 small enough, there
exists t ∈ (0,∞)k such that the following equality holds in GN (X),

eTX0+ηX1 = νNk,v(t) =

{
et1X0et2v2X1 . . . et2k−1X0etkvkX1 if k is even
et1X0et2v2X1 . . . et2k−1X0etkX0 if k is odd.

By homogeneity, this implies (5.2) with αj := t2j−1/T > 0 and βj := t2jv2j/η ∈ C.

6.3 Control of complex systems

The goal of this section is to prove one implication of Theorem 1.12, precised Proposition 6.6,
stating that the Lie algebra rank condition implies controllability. For the other implication (that
controllability implies the Lie algebra rank condition), see e.g. [24, Theorem 3.17] for a modern
reference. In particular, holomorphy is not required for Proposition 6.6 (but it is required for the
other implication of Theorem 1.12).

We will use controls that are finite sums of Dirac masses (instead of L1 functions, as in
Definition 1.8), to emphasize the similarity with the splitting result above. However, a simple
adaptation of the argument below, in line with Sussman’s original argument, would allow us to
conclude with piecewise constant controls, thus to get small-state STLC in the sense of Definition 1.8.

Proposition 6.6. Let f0, f1 be smooth vector fields on a neighborhood of 0 in Cd with f0(0) = 0
and Cd = LieC(f0, f1)(0). For every δ > 0, there exists r > 0 such that, for every x∗ ∈ BRd(0, r),
there exist T ∈ [0, δ], u ∈ U with ∥u∥U < δ such that x(T ; f, u, 0) = x∗.

Proof. Let δ > 0 and X = {X0, X1}. We have LieC(f0, f1) = iRf0 + LieR(f0, f1, if1) and f0(0) =
0 thus LieR(f0, f1, if1)(0) = Cd. Therefore, there exist b1, . . . , b2d ∈ Br(X) \ {X0} such that
(fb1(0), . . . , fb2d(0)) is an R-basis of Cd. Let N := max{|bj | + n1(bj); j ∈ J1, 2dK}. Let C, η given
by Proposition 4.7.

Let T ∈ (0, δ), k ≤ NN dim(LieNR (X0, X1, iX1)), v ∈ U⌊ k2 ⌋, t0 ∈ (0,∞)k be given by Proposition 6.4.
By the inverse mapping theorem, there exist an open neighborhood Ω of TX0 in LN (X), an open
neighborhood T of t0 in (0,∞)k and a C1 map ψ : Ω → T such that, for every Z ∈ Ω, t := ψ(Z)
satisfies ZN (|t|∗, X, ut,v) = Z. One may assume Ω and T small enough so that |ψ(Z)| ≤ 2|t0| for
every Z ∈ Ω.

There exists ρ∗ > 0 such that, for every ρ ∈ BR2d(0, ρ∗),
∑2d
j=1 ρjbj ∈ Ω and then tρ :=

ψ(
∑2d
j=1 ρjbj) satisfies |tρ| ≤ 2|t0| and ZN (|tρ|∗, X, utρ,v) =

∑2d
j=1 ρjbj .

For ρ ∈ BR2d(0, ρ∗) and ε > 0 we define

u
tρ
ε : (0, ε|tρ|∗) → C

t 7→ εutρ
(
t
ε

)
.

Then, by (6.1)
ε|tρ|∗ + ∥utρε ∥U = ε|tρ| ≤ 2|t0|ε (6.3)

Moreover, the homogeneity properties of Item 4 of Proposition 3.4 of the coordinates of the first
kind proves

ZN (ε|tρ|∗, X, utρε ) =
2d∑
j=1

ε|bj |+n1(bj)ρjbj . (6.4)

We introduce α,C ′, r as in (5.4) and (5.5), with sums indexed by j ∈ J1, 2dK instead of j ∈ J1, dK.
For z = |z|

∑2d
j=1 ωjfbj (0) ∈ BCd(0, r), we define

ε(z) := |z|α and ρ(z) :=

2d∑
j=1

|z|1−α(|bj |+n1(bj))ωjfbj (0)
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(for z = 0, we take ρ(z) = 0 so that ρ be continuous). Then, by (5.4) and (5.5)

|ρ(z)| ≤ |z|1−αN
2d∑
j=1

|ωj ||fbj (0)| ≤ r1−αNC ′ ≤ ρ∗

thus the control u
tρ(z)
ε(z) is well defined. To simplify the notation we write Tz instead of ε(z)|tρ(z)|

and uz instead of u
tρ(z)
ε(z) . Then, using (6.3), (5.5) and (6.4), we obtain

Tz + ∥uz∥U ≤ 2|t0||z|α ≤ δ and ZN (Tz, f, uz)(0) = z.

Thus, by Proposition 4.3,

|x(Tz; f, uz, 0)− z| ≤ C
(
(Tz + ∥uz∥U )N+1 + (Tz + ∥uz∥U )|x(Tz, f, uz, 0)|

)
≤ C

(
(2|t0||z|α)N+1 + (2|t0||z|α)|x(Tz, f, uz, 0)|

)
.

A Brouwer fixed point argument ends the proof as for Proposition 5.7.

7 Order restrictions for signed real-valued methods

In this section, we are interested in order restrictions for (R+,R) splitting methods, i.e. with
positive coefficients along f0 and real-valued coefficients along f1 and other additional commutator
flows. In the spirit of [6] for control theory, we exhibit a list of obstructions to the construction of
such splitting methods, which are linked with quadratic quantities with respect to the control (or
coefficients along f1).

We start with the first and second obstructions corresponding to Theorems 1.13 and 1.18. We
will see in Section 7.3 that they are consequences of the more general result Theorem 7.3.

To prove these results (and the general case), we interpret such splitting methods (with positive
coefficients alongX0 and real-valued coefficients alongX1 and the other commutators) as trajectories
of the control-affine formal system

Ṡ(t) = S(t) (X0 + uX1
(t)X1 + uW1

(t)W1 + · · · ) (7.1)

for a finite sum of m ≥ 1 controls along m brackets. Up to a rescaling, we can work on t ∈ [0, 1].
Then, the splitting method is of order N if and only if πN (logS(1)) = ZN (1, u) = X0 +X1.

The final state S(1) = exp(X0 + X1) is achieved by the reference control ū := (1, 0, . . . , 0),
which corresponds to uX1

≡ 1 and ub ≡ 0 for b ̸= X1.
Our proofs rely on the coordinates of the second kind. Thanks to Proposition 3.14, the splitting

method is of order N if and only if ξb(t, u) = ξb(t, ū) for all b ∈ BN⋆ , if and only if ζb(t, u) = ζb(t, ū)
for all b ∈ BN⋆ . Moreover, ζb(1, ū) = 1 if b ∈ {X0, X1} and 0 otherwise.

7.1 The first obstruction

In this setting, we have a single scalar control u = uX1
and we are looking at the formal system

Ṡ = S(X0 + uX1). Recall from Definition 1.2 that M1 = (X1, X0) and M2 = (M1, X0). The main
obstruction of length 3 is associated with the Lie bracketW1 = ad2X1

(X0). Theorem 1.13 is a direct
consequence of the following key positivity argument. Recall that ū denotes the constant control
ū(t) ≡ 1.

Proposition 7.1. Let u = uX1
: [0, 1] → R be a finite sum of Dirac masses such that

ζX1(1, u) = ζX1(1, ū) and ζM1(1, u) = ζM1(1, ū). (7.2)
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Then
ζW1

(1, u) + ζM2
(1, u) > 0. (7.3)

In particular, if ζM2
(1, u) = ζM2

(1, ū) = 0, then

ζW1
(1, u) > 0. (7.4)

Proof. By definition, one has ξX1(t, u) =
∫ t
0
u =: U(t) and ξM1(t, u) =

∫ t
0
U . Let us write u = 1+v

so that we have ξX1
(t, u) = U(t) = t+ V (t) where V (t) :=

∫ t
0
v. By the induction formula

ξW1
(t, u) =

1

2

∫ t

0

(ξX1
(s, u))

2
ds

=
1

2

∫ t

0

(s+ V (s))
2
ds

=
1

2

∫ t

0

(V (s))2 ds+

∫ t

0

sV (s) ds+
1

2

∫ t

0

s2 ds.

(7.5)

Recalling that ū = 1, one has ξX1(s, ū) = s on (0, 1) and thus, at time 1, we obtain

ξW1
(1, u) =

1

2

∫ 1

0

(V (s))2 ds+ (ξM1
(1, u)− ξM1

(1, ū))− (ξM2
(1, u)− ξM2

(1, ū)) + ξW1
(1, ū). (7.6)

If u satisfies (7.2), then, by (3.24) (or, more concretely, by (3.25)), ζM2
(1, u) = ξM2

(1, u)−ξM2
(1, ū)

and ζW1
(1, u) = ξW1

(1, u)− ξW1
(1, ū). Hence,

ζW1(1, u) + ζM2(1, u) =
1

2

∫ 1

0

(V (t))2 dt =
1

2

∫ 1

0

(ξX1(t, u)− t)2 dt (7.7)

Heuristically, the positive quantity is the square of the H−1 norm of u− 1 (i.e. the L2 norm of its
primitive), which is well-defined when u is a sum of Dirac masses, and strictly positive since one
cannot have u ≡ 1.

7.2 The second obstruction

In this setting we have two scalar controls uX1
and uW1

and we are looking at the formal system
Ṡ = S(X0 + uX1

X1 + uW1
W1). The second control uW1

was added to the scheme to circumvent
the order restriction of the first obstruction. For the reference control ū = (1, 0), we check that

ξX1(t, ū) = t, ξM1(t, ū) =
t2

2
, ξM2(t, ū) =

t3

6
, ξW2(t, ū) =

t5

40
. (7.8)

Working as above, we prove the following result, which implies Theorem 1.18.

Proposition 7.2. Let u = (uX1 , uW1) : [0, 1] → R2 be a finite sum of Dirac masses such that

ζMν (1, u) = ζMν (1, ū) for ν ∈ {0, 1, 2, 3}. (7.9)

Then
ζW2(1, u) + ζM4(1, u) > 0. (7.10)

In particular, if ζM4(1, u) = ζM4(1, ū) = 0, then

ζW2(1, u) > 0. (7.11)

Proof. The proof follows the same lines as the one of Proposition 7.1. We obtain more precisely
that, under the assumption (7.9),

ζW2
(1, u) + ζM4

(1, u) =
1

2

∫ 1

0

(
ξM1

(t, u)− t2

2

)2

dt, (7.12)

which corresponds to the square of the H−2 Sobolev norm of uX1
− 1 (the L2 norm of its second

primitive) which as above, is well-defined and strictly positive.
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7.3 A general result

The particular cases of Theorems 1.13 and 1.18 admit the following generalization.

Theorem 7.3. Let N ≥ 1. Consider an (R+,R) splitting method, involving X0 (with positive
coefficients) and a set C ⊂ B⋆ \ {X0} of flows (with real-valued coefficients), say with X1 ∈ C.
Assume that C ∩ {MN , . . . ,M2N ,WN} = ∅. Then the method is of order at most 2N .

In the spirit of the previous proofs, this result is a consequence of the following proposition.

Proposition 7.4. Under the assumptions of Theorem 7.3, let u ∈ U be a multi-control such that,
for all b ∈ {X1,M1, . . . ,M2N}, ζb(1, u) = ζb(1, ū), where ū = (1, 0, . . . , 0). Then, ζWN

(1, u) > 0.

Proof. Let us denote by ū := (1, 0, . . . , 0) the reference control corresponding to uX1
≡ 1 and

ub ≡ 0 for b ̸= X1. One checks by induction that there exist constants γb > 0 such that, for all
b ∈ B and t ≥ 0, ξb(t, ū) = γbt

|b|. For another control u, we then write

ξb(t, u) = γbt
|b| + ξ̃b(t, u). (7.13)

Let γN := γMN−1
. Since WN /∈ C (the set of controlled flows), one checks from the induction

formula for the coordinates of the second kind that

ξWN
(t, u) =

1

2

∫ t

0

ξMN−1
(s, u)2 ds

=
1

2

∫ t

0

(
γNs

N + ξ̃MN−1
(s, u)

)2
ds

=
1

2

∫ t

0

ξ̃MN−1
(s, u)2 ds+ γN

∫ t

0

sNξMN−1
(s, u) ds− 1

2
γ2N

∫ t

0

s2N ds.

(7.14)

Since C ∩ {MN , . . . ,M2N} = ∅, one checks that ξMν
(t, u) =

∫ t
0
ξMν−1

for ν ∈ {N, . . . , 2N}.
Moreover, if u is such that ξMν

(1, u) = ξMν
(1, ū) for 0 ≤ ν ≤ 2N , then one checks using integrations

by part that

ξWN
(1, u) =

1

2

∫ 1

0

ξ̃MN−1
(s, u)2 ds+ ξWN

(1, ū). (7.15)

Using Proposition 3.14, and the assumption that u is such that ξMν (1, u) = ξMν (1, ū) for 0 ≤ ν ≤
2N , one can write

ζWN
(1, u) =

1

2

∫ 1

0

ξ̃MN−1
(s, u)2 ds. (7.16)

As previously, this quantity corresponds to the (squared) H−N Sobolev norm of uX1
− 1 (the L2

norm of its N -th primitive), which, as above, is well-defined and strictly positive.

8 High-order methods using commutator flows

To complete the picture, we prove the following positive counterpart to Theorems 1.13 and 1.18
and more generally to Theorem 7.3. In particular, it encompasses Theorems 1.16 and 1.19.

Theorem 8.1. There exist (R+,R) splitting methods of order

� 2 involving only X0 and X1,

� 4 involving only X0 and X1,W1,

� 6 involving only X0 and X1,W1,W2,
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� 8 involving only X0 and X1,W1,W2,W3, ad
2
W1

(X0).

Using the interpretation of splitting methods as trajectories of control-affine formal systems
of the form (7.1), and Proposition 3.14, finding a splitting method of order N is equivalent to
finding a control u which is a sum of disjoint Dirac masses such that ZN (1, u) = X0 + X1, or,
equivalently, such that ξb(1, u) = ξb(1, ū) for all b ∈ BN⋆ , where we recall that ū = (1, 0, . . . , 0). Since
ξX0

(1, u) = 1 for any u, and using time and control homogeneity (see Item 4 of Proposition 3.4), it
suffices to prove that the finite-dimensional system x = {ξb; b ∈ BN⋆ , b ̸= X0} is small-time locally
controllable.

We will rely on the following well-known control result2, due to Sussman [58].

Proposition 8.2. Let m ≥ 1 and f0, f1, . . . , fm ∈ Cω(Rd;Rd) with f0(0). Let ω0, ω, . . . , ωm ≥ 0.
For b ∈ Br({X0, X1, . . . , Xm}), define the weight of b as

ω(b) := ω0n0(b) + · · ·+ ωmnm(b), (8.1)

where ni(b) denotes the number of Xi in b. Assume that there exists ω̄ ≥ 0 such that

1. span{fb(0);ω(b) ≤ ω̄} = Rd,

2. for all b ∈ Br({X0, X1, . . . , Xm}) with ω(b) ≤ ω̄, n0(b) odd and n1(b), . . . , nm(b) even,

fb(0) ∈ span{fc(0);ω(c) < ω(b)}. (8.2)

Then the system ẋ = f0(x)+u1f1(x)+ · · ·+umfm(x) is small-time locally controllable with controls
which are sum of disjoint Dirac masses.

8.1 Method of order 2

One has B2
⋆ = {X0, X1,M1}, where M1 = (X1, X0). We use a single scalar control, along X1. We

consider the system x = (ξX1
, ξM1

) on R2, whose dynamic is given by{
ξ̇X1 = u

ξ̇M1 = ξX1

(8.3)

Writing x = (x1, x2), this corresponds to f1(x) = (1, 0) and f0(x) = (0, x1). In particular, all
brackets involving f1 at least twice vanish identically. So there is no bracket to compensate and
Item 2 of Proposition 8.2 is verified. Moreover, fX1(0) = f1(0) = (1, 0) and fM1(0) = [f1, f0](0) =
(0, 1). Hence Item 1 of Proposition 8.2 is verified for example with ω0 = ω1 = 1 and ω̄ = 2.

8.2 Method of order 4

One has B4
⋆ = {X0, X1,M1,M2,M3,W1, (W1, X0), ad

3
X1

(X0)}. We use two scalar controls, along
X1 and W1. Writing the system for x = {ξb; b ∈ B4

⋆ \ {X0}}, set on R7, and using the order given
previously, we have 

ẋ1 = u1

ẋ2 = x1

ẋ3 = x2

ẋ4 = x3

ẋ5 = 1
2x

2
1 + u2

ẋ6 = x5

ẋ7 = 1
3!x

3
1 + x1u2

(8.4)

2We use here a slightly different version than Sussman’s one, which can be obtained by adapting his argument
in the spirit of Sections 5 and 6.
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which corresponds to f1(x) = (1, 0, 0, 0, 0, 0, 0), f0(x) = (0, x1, x2, x3, x
2
1/2, x5, x

3
1/6) and f2(x) =

(0, 0, 0, 0, 1, 0, x1). One checks that f2(x) = fW1
(x) (which is [f1, [f1, f0]](x) by definition).

By construction fbj (0) = ej for 1 ≤ j ≤ 7 where the bj are the ordered elements of B4
⋆ \ {X0}.

We plan to apply Proposition 8.2 with ω0 = ω1 = 1 and ω2 = 3 − ε. In particular, by the
previous remark, Item 1 is verified with ω̄ = 4.

Let b ∈ Br({X0, X1, X2}) with n0(b) odd, n1(b) even and n2(b) even, and ω(b) ≤ 4. Hence
ω2n2(b) ≤ 4. If ε < 1, this implies that n2(b) = 0. Hence the only possibility is that n1(b) = 2
and n0(b) = 1, so that ω(b) = 3 and fb(0) = ±fW1

(0). Hence, fb(0) is compensated by f2(0),
corresponding to the bracket c = X2, with ω(X2) = 3− ε.

8.3 Method of order 6

Here B6
⋆ is of cardinal 22 + 1 (for X0). We use three scalar controls, along X1,W1 and W2. As

above, we can write the system for x = {ξb; b ∈ B6
⋆ \ {X0}}, set on R22. We have f1 = (1, 0, . . . , 0),

f2 = fW1 and f3 = fW2 .
We plan to apply Proposition 8.2 with ω0 = ω1 = 1, ω2 = 3− ε2 and ω3 = 5− ε3.
Condition Item 1 is verified with ω̄ = 6. We now verify the compensation condition Item 2.

Let b ∈ Br({X0, X1, X2, X3}) with n0(b) odd, n1(b), n2(b), n3(b) even, and ω(b) ≤ 6. In particular
n0(b) ≥ 1.

� If 1 + 2(5− ε3) > 6, this implies that n3(b) = 0. This holds for ε3 < 5/2.

� If 1 + 2(3− ε2) > 6, this implies that n2(b) = 0. This holds for ε2 < 1/2.

� Thus we can assume that n2(b) = n3(b) = 0, and n1(b) is either 2 or 4. Since b ∈
Br({X0, X1}), by linearity, it suffices to check the compensation for b ∈ B⋆. Moreover,
ω(b) = |b| so b ∈ B6

⋆.

– Case n1(b) = 2. Moreover n0(b) is odd so is 1 or 3. Hence, b ∈ B5
⋆. By (2.15),

b ∈ {W1, ((W1, X0), X0),W2}.
* If b =W1, ω(b) = 3 and fb(0) = fW1

(0) = f2(0) = fX2
(0) with ω(X2) = 3− ε2. So

the compensation holds iff ε2 > 0.

* If b = ((W1, X0), X0), ω(b) = 5 and fb(0) = [[fW1 , f0], f0](0) = [[f2, f0], f0](0) =
f((X2,X0),X0) with ω(((X2, X0), X0)) = ω(X2) + 2 = 5 − ε2. So the compensation
holds iff ε2 > 0.

* If b =W2, ω(b) = 5 and fb(0) = fW2
(0) = f3(0) = fX3

(0) with ω(X3) = 5− ε3. So
the compensation holds iff ε3 > 0.

– Case n1(b) = 4. Since n0(b) is odd, n0(b) = 1 and b = ad4X1
(X0) with ω(b) = 5.

Since ad4X1
(X0) = ad2X1

(W1), fb(0) = fad2
X1

(X2)(0) and ω(ad
2
X1

(X2)) = 2 + ω2. So the

compensation holds if and only if ε2 > 0.

In summary, Sussmann’s result applies provided that ε2 ∈ (0, 1/2) and ε3 ∈ (0, 5/2).

8.4 Method of order 8

Here B8
⋆ is of cardinal 70+1 (for X0). We use five scalar controls, along X1,W1,W2,W3 and

Q♭1 := ad2W1
(X0). We have f2 = fW1

, f3 = fW2
, f4 = fW3

and f5 = fQ♭
1
. We plan to apply

Proposition 8.2 with ω0 = ω1 = 1, ω2 = 3− ε2, ω3 = 5− ε3, ω4 = 7− ε4 and ω5 = 7− ε5.
Condition Item 1 is verified with ω̄ = 8. We now verify the compensation condition Item 2.

Let b ∈ Br({X0, X1, . . . , X5}) with n0(b) odd, n1(b), . . . , n5(b) even, and ω(b) ≤ 8. In particular
n0(b) ≥ 1.

Working as above, we obtain that n3(b) = n4(b) = n5(b) = 0 and n2(b) ∈ {0, 2} when the εi
are small enough, for example ε2, ε3, ε4, ε5 ≤ 1 suffices to ensure this property.
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� Case n2(b) = 2. If ε2 < 1/2, this implies that n1(b) = 0 and n0(b) = 1. Hence, up to a sign, b
is of the form ad2X2

(X0). Since f2 = fW1
and Q♭1 = ad2W1

(X0), we have fb(0) = ±f5(0). Since
ω(b) = 1 + 2(3− ε2) and ω(X5) = 7− ε5, the compensation holds if and only if 2ε2 < ε5.

� Case n2(b) = 0. As in the previous method of order 6, since b ∈ Br({X0, X1}), by linearity,
it suffices to check the compensation for b ∈ B⋆. Moreover, ω(b) = |b| so b ∈ B8

⋆. Moreover,
n1(b) ∈ {2, 4, 6}.

– Case n1(b) = 2. Then b = Wj for j ∈ {1, 2, 3} (or of the form ((Wj , X0), . . . , X0)). As
in the previous paragraphs, the compensation holds provided that ε2, ε3, ε4 > 0.

– Case n1(b) = 4. Then n0(b) ∈ {1, 3}. Using the explicit description of such elements of
B7
⋆ (see [7, Equation (1.11)]), we know that b is of one of the following forms:

* b = Q1, with ω(b) = 5, so fb(0) = ad4f1(f0)(0) = ad2f1(f2) = f(X1,(X1,X2))(0) with
ω((X1, (X1, X2))) = 5− ε2, requiring ε2 > 0.

* b = Q♭1, with ω(b) = 7, so fb(0) = f5(0), where ω(X5) = 7− ε5, requiring ε5 > 0,

* b = (M2, (X1,W1)), with ω(b) = 7, so fb(0) = [fM2
, [f1, f2]](0) = f(M2,(X1,X2))(0)

where ω((M2, (X1, X2))) = 7− ε2, requiring ε2 > 0.

* b = ((Q1, X0), X0), with ω(b) = 7, so fb(0) = fc(0) where c = ((ad2X1
(X2), X0), X0)

with ω(c) = 7− ε2, requiring ε2 > 0.

– Case n1(b) = 6. Then b = ad6X1
(X0) = ad4X1

(W1), with ω(b) = 7. Thus fb(0) =

ad4f1(f2)(0) = fad4
X1

(X2)(0) where ω(ad
4
X1

(X2)) = 7− ε2, requiring ε2 > 0.

In summary, Sussmann’s result applies provided that εi ∈ (0, 1] with 2ε2 < ε5.

9 High-order methods relying on degeneracies

In this section, we prove results of the following form: we consider fixed vector fields f0, f1 and we
assume that there exists an (R+,R) splitting method which achieves (for these specific vector fields)
a better order than the maximal possible “universal” order of Definition 1.5 which is required to be
independent of (f0, f1). We prove that this entails vectorial relations between some commutators fb
for b ∈ Br(X) of f0 and f1. We will use the following lemma.

Lemma 9.1. Let N ≥ 1 and y1, . . . , yN and z1, . . . , zN be smooth vector fields on Rd. For T ≥ 0,
define y(T ) := Ty1 + T 2y2 + · · ·+ TNyN and z(T ) := Tz1 + · · ·+ TNzN . Assume that

exp(y(T ))− exp(z(T )) = O
T→0

(TN+1). (9.1)

Then, for all 1 ≤ i ≤ N , yi = zi.

Proof. Using the BCH formula, we have

exp(−z(T )) exp(y(T ))− exp(BCHN (−z(T ), y(T ))) = O
T→0

(TN+1). (9.2)

Hence, letting g(T ) := BCHN (−z(T ), y(T )), we obtain from (9.1) that

exp(g(T ))− Id = O
T→0

(TN+1). (9.3)

Moreover, for any given vector field h on Rd, Grönwall’s lemma proves that, for every x0 ∈ Rd,

|ehx0 − x0 − h(x0)| ≤ |h(x0)|∥h∥C1e∥h∥C1 , (9.4)

where the C1-norm is relative to a compact neighborhood of x0. Moreover, since y(T ) = O(T ) and
z(T ) = O(T ), g(T ) = O(T ). Combining these arguments leads to the fact that g(T ) = O(T 2) and
then by induction that g(T ) = O(TN+1).

From this estimate, one proves by induction that yi = zi for 1 ≤ i ≤ N .
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9.1 This first bad Lie bracket

We prove Theorem 1.15, using the coercivity argument of Proposition 7.1.

Proof of Theorem 1.15. With the notations of Definition 1.2, (2.15) implies that

B3
⋆ = {X0, X1,M1,M2,W1}. (9.5)

Let f0, f1 be smooth vector fields on Rd. If f1 = 0 or fM1
= 0 then fW1

= 0 and the conclusion
holds. Thus, we can assume that f1 ̸= 0 and fM1

̸= 0.
We assume that there exists an (R+,R) splitting method of order 3 relative to (f0, f1). Let

u ∈ U be the associated control. To lighten the notations, since u is fixed, we write ζb instead
of ζb(1, u).

Using the assumption and Magnus estimate, we obtain

eZ3(1,Tf,u) − eT (f0+f1) = O
T→0

(T 4). (9.6)

By Lemma 9.1, this implies that (1− 1)f0 = 0, (ζX1
− 1)f1 = 0, (ζM1

− 0)fM2
= 0 and

ζM2fM2 + ζW1fW1 = 0. (9.7)

Since f1 ̸= 0 and fM1 ̸= 0, we have ζX1 = 1 and ζM1 = 0. By Proposition 7.1, ζW1 + ζM2 > 0, thus
both coefficients cannot be simultaneously null and fW1 and fM2 are linearly dependent.

Remark 9.2. We proved above that the existence of an (R+,R) splitting method relative to (f0, f1)
implies that fW1

and fM2
are linearly dependent. In control theory, one is used to the conclusion

that fW1
is in the span of the fMν

(see Theorem 1.14). Here, however, it is not true that one can
conclude that there exists λ ∈ R such that fW1 = λfM2 .

Consider the control on [0, 1] given by

u :=
1

3
δt=0 +

2

3
δt= 3

4
. (9.8)

This corresponds to (R+,R) (even (R+,R+)) splitting method

e
1
4Tf0e

2
3Tf1e

3
4Tf0e

1
3Tf1 . (9.9)

For this control, the primitive of u is U(t) = 1
3 for t ∈ [0, 34 ) and U(t) = 1 for t ∈ [ 34 , 1]. In

particular, U(1) = 1,
∫ 1

0
U = 1

2 and 1
2

∫ 1

0
U2 = 1

6 . Thus, denoting by ū ≡ 1 the constant reference
control, we have ζX1(1, u) = ζX1(1, ū), ζM1(1, u) = ζM1(1, ū) and ζW1(1, u) = ζW1(1, ū).

Hence, if the vector fields (f0, f1) are such that fM2
= 0, then, for every T > 0,

Z3(1, T f, u) = Z3(1, Tf, ū). (9.10)

This is for example the case for the vector fields on R2 of (1.13) given by f0(x) = (0, x21) and
f1(x) = (1, 0), which satisfy fM2 = 0. For these specific vector fields, (9.9) is even an exact
splitting method (that is, of infinite order).

Of course, due do Theorem 1.13, one could not also have ζM2
(1, u) = ζM2

(1, ū). And, indeed,

for this control,
∫ 1

0

∫ t
0
U = 3

16 ̸= 1
6 .

9.2 The second bad Lie bracket

We prove Theorem 1.17, using the coercivity argument of Proposition 7.2.
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Proof of Theorem 1.17. We recall from (2.15) that

B5
⋆ = {X0} ∪ {Mi; i ≤ 4} ∪ {W1, (W1, X0), ((W1, X0), X0),W2, P1,1, (P1,1, X0), P1,2, Q1}, (9.11)

using the notations of Definition 1.2, (2.16), as well as P1,1 := (X1,W1) and P1,2 := (M1,W1).
Let f0, f1 be smooth vector fields on Rd such that fW1 = 0. If fMν = 0 for some ν ∈ {0, 1, 2, 3},

then fW2 = 0 and the conclusion holds. Indeed, since W2 = (M1,M2), fW2 clearly vanishes if
fM1

= 0 or fM2
= 0. It also obviously vanishes if fM0

= fX1
= f1 = 0 (since then all brackets

except f0 vanish). Eventually, using the Jacobi identity (2.2), one obtains

W2 = [M1,M2] = [[W1, X0], X0]− [X1,M3]. (9.12)

Hence, if fW1 = 0 and fM3 = 0, then fW2 = 0. We can thus assume that fMν ̸= 0 for all
ν ∈ {0, 1, 2, 3}.

We assume that there exists an (R+,R) splitting method of order 5 relative to (f0, f1). Let
u ∈ U be the associated control. To lighten the notations, since u is fixed, we write ζb instead
of ζb(1, u).

The assumption fW1
= 0 implies fb = 0 for every

b ∈ {W1, (W1, X0), ((W1, X0), X0), P1,1, (P1,1, X0), P1,2, Q1}. (9.13)

Thus

Z5(1, Tf, u) = T (f0 + ζX1
f1) +

3∑
ν=1

T ν+1ζMν
fMν

+ T 5 (ζM4
fM4

+ ζW2
fW2

) .

The Magnus estimate gives

eZ5(1,Tf,u) − eT (f0+f1) = O
T→0

(T 6).

By Lemma 9.1 and the fact that f1 ̸= 0, . . . , fM3
̸= 0, we obtain ζX1

= 1 and ζMν
= 0 for

ν ∈ {1, 2, 3}. Moreover, we obtain

ζM4
fM4

+ ζW2
fW2

= 0. (9.14)

By Proposition 7.2, ζW2
+ ζM4

> 0, thus both coefficients cannot be simultaneously null and fW2

and fM4
are linearly dependent.
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