Équation de Hill-Mathieu

Références: Zuily, Queffelec, Analyse pour l'agrégation, p 410-412

On considère l'équation différentielle suivante :

$$(E): y'' + qy = 0 \quad ;$$

avec $q: \mathbb{R} \to \mathbb{R}$ une fonction continue, paire, π -périodique. On cherche une quantité que caractérise l'existence de solution bornée. En vertu du théorème de Cauchy - Lipschitz, l'espace des solutions de (E) est un sous-espace vectoriel de $\mathcal{C}^2(\mathbb{R})$, de dimension 2, que l'on notera W. On peut, de plus, le munir d'une base "canonique" (y_1, y_2) définie par :

$$\begin{cases} y_1(0) = 1 \\ y'_1(0) = 0 \end{cases} \text{ et } \begin{cases} y_2(0) = 0 \\ y'_2(0) = 1 \end{cases}$$

On considère l'endomorphisme de translation suivant

$$u: \mathcal{C}^2(\mathbb{R}) \to \mathcal{C}^2(\mathbb{R})$$

 $f \mapsto f(.+\pi)$.

Étape 1 : W est u-stable.

Soit $y \in W$, pour tout $x \in \mathbb{R}$ on a, comme q est π -périodique,

$$u(y)''(x) + q(x)u(y)(x) = y''(x+\pi) + q(x)u(x+\pi) = y''(x+\pi) + q(x+\pi)u(x+\pi) = 0.$$

Donc u(y) est solution de (E).

Par abus on identifiera u à la matrice de $u_{|W}$ dans la base (y_1, y_2) . On a :

$$u = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right) \quad .$$

Étape 2: a,b,c,d?

Pour tout $x \in \mathbb{R}$, on a : $u(y_1)(x) = ay_1(x) + by_2(x)$. En évaluant en 0, on obtient : $a = y_1(\pi)$. De plus en dérivant l'expression précédente et en évaluant en 0, on obtient : $b = y'_1(\pi)$. En procédant de même avec y_2 , on montre que l'on a : $c = y_2(\pi)$ et $d = y'_2(\pi)$.

On pose : T = tr(u) = a + d.

Étape 3: det(u)?

Soit w la wronskien de la base (y_1, y_2) . On a : $w = y_1 y_2' - y_2 y_1'$. On vérifie que la dérivée de w est constante égale à 0. Par continuité du wronskien, il est donc constant. On a donc : $\det(u) = w(\pi) = w(0) = 1$.

Étape 4: a=d

On pose $z = y_1(-.)$. Pour tout $x \in \mathbb{R}$, on a :

$$z''(x) + q(x)z(x) = y_1''(-x) + q(x)y_1(-x) = y_1''(-x) + q(-x)y_1(-x) = 0,$$

car q est paire. On en conclut que z est solution de (E). Or elle vérifie les mêmes conditions initiales que y_1 , elle lui est donc égale. On en déduit que y_1 est paire. De la même manière, il apparaît que y_2 est impaire.

L'inverse de u est l'endomorphisme $u^{-1}: f \mapsto f(-\pi)$. Sa matrice dans la base (y_1, y_2) est donc :

$$u^{-1} = \begin{pmatrix} y_1(-\pi) & y_2(-\pi) \\ y'_1(-\pi) & y'_2(-\pi) \end{pmatrix} = \begin{pmatrix} a & -c \\ -b & d \end{pmatrix} .$$

Or d'après la formule de l'inverse (avec la comatrice) on a aussi :

$$u^{-1} = \left(\begin{array}{cc} d & -c \\ -b & a \end{array} \right) \quad .$$

On en déduit que a = d.

Nous avons donc à présent toutes les cartes en main pour démontrer le théorème suivant :

Théorème.

- Si |T| < 2, alors toutes les solutions de (E) sont bornées.
- Si |T| = 2, alors il existe des solutions bornées non nulles.
- Si |T| > 2, alors toutes les solutions non nulles sont non-bornées.

Démonstration. Le polynôme caractéristique de u est : $\chi_u(X) = X^2 - TX + 1$. Son discriminant est donc $\Delta = T^2 - 4$.

Cas 1: Si |T| < 2.

Dans ce cas, on a $\Delta < 0$. u admet donc deux valeurs propres complexes conjuguées, ρ et $\bar{\rho}$. On a : $\rho\bar{\rho}=1$ donc $|\rho|=1$. Soient z_1 et z_2 les valeurs propres associées. C'est une base propre de W. Pour tout $x\in\mathbb{R}$, on a : $z_1(x+\pi)=\rho z_1(x)$. La fonction $|z_1|$ est donc π -périodique et donc bornée. On en déduit que z_1 est bornée. De la même manière, z_2 est bornée. Par linéarité, toutes les solutions sont bornées.

Cas 2: |T| = 2.

Si |T|=2, le discriminant est nul et ± 1 est l'unique valeur propre. En considérant un vecteur propre z associé, on montre de la même manière que |z| est π -périodique et que z est une solution bornée.

Cas 3: Si |T| > 2.

Dans ce cas, u admet deux valeurs propres réelles α et α^{-1} (avec $\alpha > 1$). On note z_1 et z_2 les vecteurs propres associés. Ils forment une base. Soit y une solution non nulle, on dispose de β et γ non tous nuls, tels que : $y = \beta z_1 + \gamma z_2$. Si $\beta \neq 0$, on dispose de x_0 tel que $z_1(x_0) \neq 0$. Pour tout $n \in \mathbb{Z}$ on a :

$$y(x_0 + n\pi) = \alpha^n \beta z_1(x_0) + \alpha^{-n} \gamma z_2(x_0)$$
, qui explose quand n croît.

De la même manière, si γ est non nul, il faut faire tendre n vers $-\infty$ pour montrer l'explosion. Ainsi toute solution non nulle est non bornée.

Remarques: • Si q = 1, on trouve $y_1 = \cos$ et $y_2 = \sin$. La trace est alors

$$T = y_1(\pi) + y_2'(\pi) = 2\cos(\pi) = -2.$$

Donc il existe des solutions bornées et en fait elles le sont toutes dans ce cas là.

• Si q = -1, on trouve $y_1 = \cosh$ et $y_2 = \sinh$. La trace est alors

$$T = y_1(\pi) + y_2'(\pi) = 2\cosh(\pi) > 2.$$

Il n'y a donc pas de solution bornée non nulle.

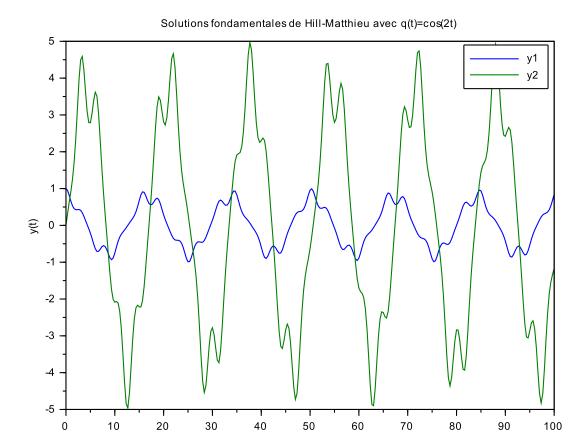
• On pourrait essayer de résoudre explicitement l'équation pour des q plus complexes mais c'est difficile. Par exemple, pour $q(x) = \cos(2x)$, la résolvante est déjà incalculable.

Le théorème n'en est pas pour autant inutilisable. En effet, T est donné par

$$T = y_1(\pi) + y_2'(\pi).$$

Il suffit donc de savoir approximer assez précisément y_1 et y_2 (avec un RK4 par exemple) pour pouvoir déterminer si on a une chance de trouver des solutions bornées non triviales.

Voici un exemple où T vaut environ 0.77. On observe que y_1 et y_2 sont bornées.



D'ailleurs je n'ai pas choisi cet exemple au hasard. Mathieu a étudié cette équation pour $q(x) = \lambda - 2\varepsilon \cos(2x)$. Il s'intéressait à l'équation d'onde pour une membrane elliptique. Hill a retrouvé une équation similaire en étudiant le périgée de la lune.

Tempst

Adapté du travail de Baptiste Huguet.