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The overdamped Langevin equation in molecular dynamics

Take N particles moving in a fluid. Then, the positions g(t) and the velocities
p(t) of the particles satisfy the underdamped Langevin equation:

dq(t) = p(t)dt
dp(t) = (—=VV(a(t) = p(t)dt + /F aW(2)

In a high friction regime, we obtain the following simplified equation in RY called
the overdamped Langevin equation, where f = =V V:

dX(t) = f(X(t))dt + cdW(t), X(0) = Xp € R?.
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The overdamped Langevin equation in molecular dynamics

Take N particles moving in a fluid. Then, the positions g(t) and the velocities
p(t) of the particles satisfy the underdamped Langevin equation:

da(t) = p(t)dt
dp(t) = (—~VV(q(t) — vp(t))dt + /Z-dW(1)

In a high friction regime, we obtain the following simplified equation in RY called
the overdamped Langevin equation, where f = =V V:

dX(t) = f(X(t))dt + odW(t), X(0) = X, e RE.

If there are constraints ((X) = 0 (e.g. strong covalent bonds between atoms, or
fixed angles in molecules), the solution lies on the manifold
M = {x e RY,((x) = 0} and we get the constrained Langevin dynamics:

dX(t) = Ma(X(2)F(X(t))dt + oMa(X(t)) o dW(t), X(0)=Xpe M,
where My, : RY - RI%9 is the projection operator on the tangent bundle of M.
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Classical tools for the weak convergence
A numerical scheme is said to have local weak order p if for all test functions ¢,
[E[¢(X1)[Xo = x] = E[¢(X(h))[X(0) = x]| < C(x, $)hP*1.

Let u(x,t) = E[¢(X(t))|X(0) = x], t = 0, then under certain assumptions, u
satisfies the following backward Kolmogorov equation:

ou
E(x, t) = Lu(x,t), t>0, u(x,0)=a(x).
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A numerical scheme is said to have local weak order p if for all test functions ¢,
[E[¢(X1)[Xo = x] = E[¢(X(h))[X(0) = x]| < C(x, $)hP*1.

Let u(x,t) = E[¢(X(t))|X(0) = x], t = 0, then under certain assumptions, u
satisfies the following backward Kolmogorov equation:

ou
E(x, t) = Lu(x,t), t>0, u(x,0)=a(x).

The generator £ is a differential operator of order 2 given in RY by

2
Lo =df + %A¢.
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Classical tools for the weak convergence

A numerical scheme is said to have local weak order p if for all test functions ¢,
[E[¢(X1)[Xo = x] = E[¢(X(h))[X(0) = x]| < C(x, $)hP*1.
Let u(x,t) = E[¢(X(t))|X(0) = x], t = 0, then under certain assumptions, u
satisfies the following backward Kolmogorov equation:
ou

E(X’ t) = Lu(x,t), t>0, u(x,0)=a(x).

The generator £ is a differential operator of order 2 given in RY by

2
Lo =df + %A¢.

On M = ("1({0}), wewrite g =V(and G=g'g=|g ? then L is given by

2 2
Lo = ' + %M _ %G‘l div(g)d'g

-1 / 02 -2 / / 02 —1 n
-G (g,f)¢g+7G (g,gg)qﬁg—?G ?" (g, 8)-
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Classical tools for the weak convergence

A numerical scheme is said to have local weak order p if for all test functions ¢,
[E[¢(X1)[Xo = x] = E[¢(X(h))[X(0) = x]| < C(x, $)hP*1.
Let u(x,t) = E[¢(X(t))|X(0) = x], t = 0, then under certain assumptions, u
satisfies the following backward Kolmogorov equation:
ou

E(x, t) = Lu(x,t), t>0, u(x,0)=a(x).

The generator £ is a differential operator of order 2 given in RY by

2
Lo =df + %A¢.

On M = ("1({0}), wewrite g =V(and G=g'g=|g ? then L is given by

2 2
Lo = ' + %M _ %G‘l div(g)d'g

-1 / 02 -2 / / 02 —1 n
-G (g,f)¢g+7G (g,gg)qbg—?G ?" (g, 8)-

— From now on, M is either RY or a compact smooth manifold of codimension
one such that G(x) # 0, for all x € M.
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Classical tools for the weak convergence

We develop the exact solution in Taylor series:

h? h?
E[¢(X(h))|X(0) = x] = ¢(x) + hLo(x) + §E2¢(X) + §£3¢(X) + o
We compare with the Taylor series of the numerical approximation:

E[¢(X1)|Xo = x] = ¢(x) + hAop(x) + P A1d(x) + h> Az¢(x) + ..

Theorem (Talay, Tubaro (1990) and Milstein, Tretyakov (2004))

Under assumptions, the scheme is of weak order p if

1 . ;
ﬁﬁ‘/ = Ajfl, = ].7 ceey P

— Tree formalism of B-series for deterministic problems: Butcher (1972) and
Hairer, Wanner (1974),...

— Tree formalism for strong and weak errors on finite time: Burrage, Burrage
(1996); Komori, Mitsui, Sugiura (1997); RoBler, Debrabant, Kvaerng, . ..
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Ergodicity, invariant measure

Ergodicity: there exists a unique invariant measure du,, = p.doag such that

T—o+x

-
lim ! fqz& ))ds = fqzﬁ Voo (y)dor(y) almost surely,
0

for all test functions ¢ and with the Euclidean canonical measure doaq on M.
The Gibbs density p., satisfies L*p.. =0 and p..(x) = Zexp(—3 V(x)).
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Order of convergence for the invariant measure

Definition (Convergence for the invariant measure)

We call error of the invariant measure the quantity

e(6, ) = | lim —2¢ )= |, owpedomtn].

No+x N +1

The scheme is of order p if for all test function ¢, e(¢, h) < C(¢)hP.

Remark: a scheme of weak order p automatically has at least order p for the
invariant measure. One can build high order scheme for the invariant measure
with low weak order (see, e.g., Bou-Rabee, Owhadi, 2010 and Leimkuhler,
Matthews, 2013).

Example (first introduced in Leimkuhler, Matthews, 2013)
Xos1 = Xo + hF(X,) + aﬁ%

The scheme has weak order 1 and order 2 for the invariant measure in RY.
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Order of convergence for the invariant measure

Definition (Convergence for the invariant measure)

We call error of the invariant measure the quantity

(6. ) = |, im = 2 60) = || o)pendosty).

The scheme is of order p if for all test function ¢, e(¢, h) < C(¢)hP.

Theorem (L., V., 2020 on a compact smooth manifold M
Abdulle, V., Zygalakis, 2014 in R
Related work: Debussche, Faou, 2012; Kopec, 2013)

Under technical assumptions, if Afp,. =0 in L?(dopn), j=2,...p—1, ie. for all
test functions ¢,

JM Aip(y)pr(y)dom(y) =0,  j=2,...,p—1,

then the numerical scheme has order p for the invariant measure.
v
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Example: the #-method

Overdamped Langevin equation in R9:
dX = f(X)dt + 0dW, f=—-VV
The 6-method:
Xps1 = Xo + h(1 = 0)F(X,) + hOF (Xns1) + oV hE,
where £, ~ N(0, I) are independent standard Gaussian variables.

Methodology:
@ Compute the Taylor expansion of Xi,
@ Compute the Taylor expansion of ¢(X1) ,
@ Compute E[¢(X7)] and deduce the A;¢,

Q@ Simplify § A;jp(y)px(y)dy.
Rd
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Example: the #-method

The O-method:
Xog1 = Xn + h(1 — 0)F(X,) + hOf (Xni1) + 0N hén,

where &, ~ N(0, I) are independent standard Gaussian variables.
An expansion in h yields, for & ~ N (0, Iy),

" o2

X1 = x + Vhot + hf + hhbof'¢ + h*0f'f + > (68 +

We deduce E[¢(X1)|Xo = x] = ¢(x) + hLo(x) + h2A1¢(x) + ..., where
Ao = E[06'F'f + 1<z>"(f f) + bo® S HF(6,6) + 0576 (FE,€)

o2

+ 260,66 + DD €]
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Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and

Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher
(2008))

We use trees as a powerful notation for our differentials. We denote F(7)(¢) the
elementary differential of a tree 7.

o Fo)(¢) = ¢
o F()(¢) = ¢'f = X, 0i6F;

° F(\'))(Qﬁ) = ¢"(f,f'f) = Zi,j,k 0ij¢fiOxfifi
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Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and
Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher
(2008))

We use trees as a powerful notation for our differentials. We denote F(7)(¢) the
elementary differential of a tree 7.

o F(a)(9) = ¢
o FQ) () = ¢'f = X, 0,0,
° F(\))(QZ’) = ¢"(f,f'f) = Zi,“( 0ij¢fiOxfifi

Aromatic forests: introduced by Chartier, Murua (2007) (See also Bogfjellmo
(2015))

OOI Za f) x (Za,-gajf,-) x &'
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Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and
Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher
(2008))

We use trees as a powerful notation for our differentials. We denote F(7)(¢) the
elementary differential of a tree 7.

o F(a)(9) = ¢
o FQ) () = ¢'f = X, 0,0,
° F(\))(¢) = ¢"(f,f'f) = Zi,“( 0ij¢fiOxfifi

Aromatic forests: introduced by Chartier, Murua (2007) (See also Bogfjellmo
(2015))

OOI = (M aif) x (N atosh) x o'
Grafted aromatic forests: ¢ is represented by crosses (in the spirit of P-series)

F(I\/)(@ = 0%¢"(f'¢,€) and F(\I/)(qﬁ) = a%¢'f"(€,€).
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Grafted forests for the 0-method

For the 6 method,
E[¢(X1)|Xo = x] = ¢(x) + hLp(x) + h*Ar16(x) + ...
and A; is given by

2
Aa6 = BIOGTE+ 507(F,) + S5 F1(6.) + 020 (F5.0

2 o)

Lae) ot @
+ 607,66 + 60 (6,6,6,6)]

=ElF<9£+%v+gY+0I\/

+ %\V + %W) (¢)].
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Exotic aromatic forests: adding lianas (Math. Comp.2020)
We add lianas to the aromatic forests.

Examples
F) =25 ¢"(F(e), ).
F(2) =02 ¢" (e, &) = 02D

F(D) = o* S (e (1 7, 0)) = o* S (e, (AF) ().

ij
If v is the following forest

C) b,

then F( )( ) = O’SZU k= 1dIV 6 f X ¢’((6k,f) ( 6wf (3k/f

Remark: the forests do not depend on the dimension of the problem.
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Main tool 1: expectation of a grafted exotic aromatic forest

The following result is a consequence of the Isserlis theorem.

Theorem

If v is a grafted exotic aromatic rooted forest with an even number of crosses,

E[F(7)(#)] is the sum of all possible forests obtained by linking the crosses of
pairwisely with lianas.

Example

E [F (W) <¢>] = *E[0W(£,€,6,6)] = 0* ). djudE[EEEE]

ijkl

= 042 9iiii¢E[§f}] +30* Z 6,,J-J~¢IE[§,~2]IE[§J-2]
i ij

=30 iy = 3F (75) (¢).

iJ
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Explicit formula for A;
The operator A; given by

E[p(X1)|[Xo = x] = ¢(x) + hLp(x) + h*A16(x) + ...

is now convenient to write with exotic aromatic trees.
1 0
Aup = E[0S'F'F + S0 (F,F) + S0 (€,) + 06" (FE,€)
1
+ ¢<3 (,6,6) + 5,09(6.6,6,9)]

=E[F(9E+%V+2Y+9I\/
+%W+%W>(¢)]
(E I SR g\)(@.
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Integrating by parts exotic aromatic forests

Goal: simplify S Ajppdy, i.e write it as § qS’ )P dy.
R4

i .
| re pﬁdy—azfdaxlaxj fpdy

_ 22[ R R Y

e OXi0x; 6xJp re OXi0x; | 0x;
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Integrating by parts exotic aromatic forests

Goal: simplify S Ajppdy, i.e write it as § qS’ )P dy.
R4

L ,
- 2 fp,
JRd F(O)@)prdy = 0 ZL 6X,6XJ i dy

_ 22[ 00 o[ 00 e,

e OXi0x; 6xJp re OXi0x; | 0x;

If f =—VV, py(x) = Ze 2VX)/7" and Vp,, = 2 fp,. Then

f )@ dy = - f FO) @) prdy -2 f FON) (6)pndy.
Rd Rd

]Rd
We write

I ~-D_ 2\
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Main tool 2: integration by parts

Theorem

Integrating by part an exotic aromatic forest v amounts to unplug a liana from
the root, and to plug it either to another node of y or to connect it to a new
node, transform the liana in an edge and multiply by 2.

For a node v of the exotic aromatic forest vy, it rewrites in

G g

’}‘/1,'/1 ~ _2 Yo .

Example

o
(0~ 2 (I,‘~21J+4\/~ 27 —4£+4°\/

Theorem

Take a method of order p. If A, = F(v,) for a certain linear combination of
exotic aromatic forests vy, if v, ~ Y, and F(4,) = 0, then the method is at least
of order p + 1 for the invariant measure.
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Application to the construction of high order integrators

Theorem (Conditions for order p for the invariant measure in R9)

Order conditions for a class of stochastic Runge-Kutta methods:

YP =X, +h Y agf (Y7) + diovhen,  i=1,
=i

S

ey S,

Xn+l = Xn +h 2 blf(yln) + O\mgm
i=1

i=

Order | Tree T | F(7)(¢) Order condition
1| Lo e b= 1
2 E ¢'f'f | Xbig—2Y bidj=—3
I o2¢ AF Zb,dl?_zz bid; = _%
3
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Postprocessors

Idea: extend to the context of ergodic SDEs the popular idea of effective order for
ODEs from Butcher (1969),

Yos1 = Xno Knoxy ' (), Yo = xno Ki o x; (%0)-
Postprocessing: X, = G,(X,), with weak Taylor series expansion

E(¢(Gn(x))) = ¢(x) + hPAp(x) + O(hP*).

Theorem (V. (2015))

Under technical assumptions, assume that X, — X,41 and X, satisfy
A}kpw =0, j<p,

(Ap + [£, Ap])*p =0,

then the scheme has order p + 1 for the invariant measure.

Remark: the postprocessing is needed only at the end of the time interval (not at
each time step).
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Postprocessors

Theorem

If we denote ~ the exotic aromatic B-series such that F(vy) = (A, + [£, Ap]) and
if v ~ 0, then X, is of order p + 1 for the invariant measure.

Theorem (Conditions for order p using postprocessors)

Order | Tree T Order conditions

2 E Zb,-c,-—22b;d,-—2ZF,-+2d_02=—%

I | b2 bd-Yb+d =-}

Example (first introduced in Leimkhuler, Matthews, 2013)

_ 1 _
Xos1 = X + hF (X, + %ﬁgn) +oVhen,  Xo=Xo+ SoVEE,

The scheme has order 1 of accuracy for the invariant measure, but X, has order 2.

v
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The Euler integrator for constrained Langevin dynamics

Constrained Langevin dynamics on the manifold M = {x € R?, ((x) = 0}
dX = N (X)F(X)dt + oM (X) o dW.

Example (Euler integrator)

Two widely used integrators are the Euler scheme with explicit projection
direction, where g = V(

Xn+1 = X, + hf(Xn) + U\/Egn + )‘g(Xn)a C(Xn+1) =0,

and alternatively the Euler scheme with implicit projection direction

Xn+1 = Xn + hf(Xn) + U\/Zgn + )\g(Xn+1)7 C(XnJrl) = 0.

— References: Ciccotti, Kapral, Vanden-Eijnden (2005); Leliévre, Le Bris,
Vanden-Eijnden (2008); Leliévre, Rousset, Stolz (2010); . ..
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The Euler integrator for constrained Langevin dynamics

Constrained Langevin dynamics on the manifold M = {x € R?, ((x) = 0}
dX = N (X)F(X)dt + oM (X) o dW.

Example (Euler integrator)

Two widely used integrators are the Euler scheme with explicit projection
direction, where g = V(

Xn+1 = X, + hf(Xn) + U\/Egn + )‘g(Xn)a C(Xn+1) =0,

and alternatively the Euler scheme with implicit projection direction

Xn+1 = Xn + hf(Xn) + U\/Zgn + )\g(Xn+1)7 C(XnJrl) = 0.

— References: Ciccotti, Kapral, Vanden-Eijnden (2005); Leliévre, Le Bris,
Vanden-Eijnden (2008); Leliévre, Rousset, Stolz (2010); . ..

Issue: both Euler integrators have order 1 for the invariant measure.
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The Euler integrator for constrained Langevin dynamics

Xo + hfK,) + olRE,

S(Xn)

Implicit method
Explicit method
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A new class of RK methods for constrained Langevin
In the spirit of the methods RATTLE (Leliévre, Rousset, Stolz (2019)) and
SPARK (Jay (1998)), we use the following class of Runge-Kutta integrators:

Y; = X+hZaU +mfdgn+A2a,,g i=1,...,s,
Jj=1 j=1
YY) =0 if &=1, i=1,...,s,
XH+1:YS,

~

Butcher tableau with ¢ = Al, § = Al e {0,1}, b= A, and b= As..

c| Aol Ald
o TBT

Example

The Euler integrator X,y 1 = X, + hf(X,) + ovhén + A\g(Xnt1), ((Xps1) = 0 has
the following Butcher tableau

i

v
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Order conditions for sampling Langevin dynamics on M
Theorem (Runge-Kutta conditions)

o Consistency conditions: ¢s = ds = 1 and ZJS'=1 lA)JdJ = ijl IA)J-SJ-dj
@ 22 cond. for order 2 for the invariant measure (resp. 11 cond.if § = 1):

s s 1 s ~ on S ~ R 1 s ~ 2
Db =2 bidi— 5, Y, bidfaydi = ) bididyd;+ 5(2 bidh) ..
j=1 j=1 ij=1 ij=1 i=1

e 25 cond. for weak order 2 (conditions do not have a solution if § = 1).

Example

An integrator of order 2 for the invariant measure if M is the sphere

Yi= X, + h (g _ ﬁ) F(Y2) + o/ (1 - ?) €+ M(22(V1) — g(Y2),

Yy = X, + hf(Y1) + ovVhé, + Xag(Y1), ¢(Y1) = ((Y2) =0,
X1 = Ya.

V.
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Numerical experiments

e We introduce a 4-stages RK method of order 2 for the invariant measure that

uses only 3 evaluations of f per step.

Yi = X, + ovVhdi&, + Mig(V1),
Yo = X, + heaf (Y1) + oV hdab + Ao [31( Y1) + 320g(Y2)],

Y =X, +hC3f(Y2)+U\fd35n+>\3[A g(Y1) + ag(Y2) + a33g(Y3)],

X,,+1 X, + hZ a4J + O'\[fn + A\ Z a4jg
j=1

where A1, A2, A3, A4 are such that {(Y;) = C(YQ) =({(Y3) = ((Xs41) = 0.

Butcher tableau:

0 0 0 0 011 0 0 0]l dv

(&) Co 0 0 0 1 521 322 0 0 d2

C3 0 C3 0 0 1 331 332 333 0 d3

1 |3 ap a3 0| 1|am am as 0] 1
| Gs 32 A O [Gm 32 G O
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Numerical experiments

e We introduce a 4-stages RK method of order 2 for the invariant measure that
uses only 3 evaluations of f per step.

e We plot the invariant measure error versus the timestep h for the order 2
integrator and the Euler scheme when M is the unit sphere in R, with the
constraint ¢(x) = (|x|* —1)/2, the potential V/(x) = 25(1 — x2 — x2), the final
time T = 10 and 107 trajectories.

Invariant measure error

—3§—Euler int.
; Order 2 int.
-6
10 - - - Slope 1
- Slope 2
1073 1072
Stepsize h
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Numerical experiments

e We introduce a 4-stages RK method of order 2 for the invariant measure that
uses only 3 evaluations of f per step.

e We plot the invariant measure error versus the timestep h for the order 2
integrator and the Euler scheme when M is a torus in R3, with the constraint
C(x) = (|x|* +8)2 = 36(x2 + x2), the potential V(x) = 25(x3 — 1)2, the final
time T = 20 and 107 trajectories.

Invariant measure error

—3§—Euler int.
Order 2 int.
- - - Slope 1
[ ————— Slope 2
10°°
1072
Stepsize h
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Numerical experiments

e We introduce a 4-stages RK method of order 2 for the invariant measure that
uses only 3 evaluations of f per step.

o We compare the approximations lgyer and f» given by the Euler scheme and the
new order 2 Runge-Kutta integrator of /(m) = SSL(m) Tr(x)dp (x) on the special
linear group M = SL(m) in R™ with the constraint ((x) = det(x) — 1, the final
time T = 10 with the stepsize h = T /22, 10° trajectories and the potential

V(x) = 25 Tr((x — Iye) T (x — I2)).

m | dim(SL(m)) I(m) error for Igyer | error for I
2 3 2.00967 6.4-107* 4.4.107°
3 8 3.01954 1.1-1073 2.0-107*
4 15 4.02930 1.6-1073 2.3-107%
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Exotic aromatic forests: adding scalar product (Submitted. 2020)

We use partitioned forests and we introduce a new kind of edge that represents
the scalar product.

Examples
Fod) = 613, gidifig = G (g, 'g).
F(o) = 02G2Y, . gi0ugigigr = 026 2(g,8" (g, 8)).

In general, we can get forests of the form

5 C)

T 4\@2

, % 1
7,6 .

where the associated differential is

d d
FON@) =0°G2 > >0 Ouify Opisfis Oy 081 081 Oisi&is 8is Onis:

itye.yig=1j1,....;3=1
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Exotic aromatic forests: adding scalar product (Submitted. 2020)

We use partitioned forests and we introduce a new kind of edge that represents
the scalar product.

Examples

F(od) = 613, &9ifg = GY(g. F'g).
F(o) = 02G2Y, ., 6i0ugigigr = 02G2(g,8" (g, 8)).

On the manifold M, the generator L is given by

2 2
Lo=¢'f—G (g o'g— %G’l div(g)d'g + %G’z(g, g'e)d'g

0.2 0_2
+ 7A¢ - ?Gflqs”(g»g)
0.2
= F1)(0) - 67 g Nog — S FO D) + % 6 6.68)0's

o2

1
+ 586 = FO)(9)
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Exotic aromatic forests: adding scalar product (Submitted. 2020)

We use partitioned forests and we introduce a new kind of edge that represents

the scalar product.

Examples

Flod) = GT1Y, gidjfigr = G (g, F'g).

F) =026 Y, , giugigign = 0°G(g,8"(g,8))-

On the manifold M, the generator L is given by

2 2
Lo=¢'f—G (g g - %G‘l div(g)d'g + %G‘2(g, g'g)d'g

o? o .,
+ 50— =G '¢"(g,8)
2
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Exotic aromatic forests: adding scalar product (Submitted. 2020)

We use partitioned forests and we introduce a new kind of edge that represents
the scalar product.

Examples

F(ed) = G, gidifg = G (g, F'g)-
F(o) = 02623, si0ugigien = 0°G~(g,8" (&, 8))-

On the manifold M, the generator L is given by

/ —1 / 02 -1 4 / 0'2 -2 / /
Lo=¢'f-GC (g,f)cﬁg—?G dw(g)¢>g+3G (g.8'g)d'g

2 2
+ %Aqﬁ — %G‘1¢"(g7g)

= FO)(9) — Floe D) — S FOD(6) + 5 Fo3 D)
FSFEN6) ~ 5 FOV)0)
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Exotic aromatic forests: adding scalar product (Submitted. 2020)

We use partitioned forests and we introduce a new kind of edge that represents
the scalar product.

Examples
Fod) = 613, gidifig = G (g, 'g).
F(o) = 02623, gi0ugigigr = 026 2(g,8" (g, 8)).

On the manifold M, the generator L is given by

, o2 o
Lo=¢'f—G (g o'g— 56 Ldiv(g)¢'g + 56 ’(g.8'8)d'g

0.2

+—NA¢p— 0—26‘1¢”(g g)
2 2 :

1 1 1 e 1
:F<I—o=.f—§(°)i+§%EEJFEU—EO\/J)((?)-

Similarly, we obtain an expansion in exotic aromatic forests of the operators A;.
Goal: find conditions such that A¥p.,. =0 in L*(doq).
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Isometric equivariance of exotic aromatic B-series

Examples of aromatic forests:

FQ) =rf=Yaff F(O) = div(f Zaf

Examples of exotic aromatic forests:
F(*) = Af = Zaiif F(o=s) = | f]? Z fif;

Definition
Affine equivariant map: invariant under an affine coordinates map.
Isometric equivariant map: invariant under an isometric coordinates map.

Local affine equivariant maps are exactly aromatic B-series methods (see
McLachlan, Modin, Munthe-Kaas, Verdier, 2016).

Proposition J

Exotic aromatic B-series methods are isometric equivariant.

Converse: ongoing work with H. Munthe-Kaas and O. Verdier.
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Integration by parts of exotic aromatic forests

Lemma (Integration by parts on M)

If:R?Y - R and H: R? - RY are smooth functions, then we have
| s tdon == [ v avatdon,
M M

where V pm1 := NV and diva(H) = div(H) — G~(g, H'g).
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Integration by parts of exotic aromatic forests

Lemma (Integration by parts on M)

If - R?Y - R and H : RY — R9 are smooth functions, then we have

| 67 uH =6t Hpwiglan, = | [6 4 V(g Hew

— 2k +1)6**?)(g,g'g) (g, H)th — G ¥ div(H)y
+2kG= "D (g, g’ Hyy + 6=« D div(g) (g, H)y

2 2
+ 5670 (g, ) (g, Hy — -5 G (F, H)Y | dpco.
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Integration by parts of exotic aromatic forests

Lemma (Integration by parts on M)

If - RY > R and H : RY — RY are smooth functions, then we have

| 67 uH =6t Hpwiglan, = | [6 4 V(g Hew

— 2k +1)6**?)(g,g'g) (g, H)th — G ¥ div(H)y
+2kG= "D (g, g’ Hyy + 6=« D div(g) (g, H)y

2 2
+ 55670 (g, £)(g, )Y — =5 6H(F, )Y dpue.

For integrating by parts an exotic aromatic forests in the direction of a liana, it
rewrites into

RS

Jor' — 3/0 ~ —(Ng(v) +1) o=I %/o + Ng(7) w} +O "/v/o +2 o0—e %/o -2 %J.
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Integration by parts of exotic aromatic forests

Integration by parts of exotic aromatic forests:

03 e + 1) o3 4 () 7; 1O 420 —29

Example

For v = "' and v = r the root, we get

VUL IO SV .

42 o0 =27

e )

Application: We have §, Ai¢du, =, Adodu,, where

AV = F((de — BTd) ot N +(bTc—2b"d + %) E—i— 75 forests).

Choosing the coefficients such that A? = 0 yields the order 2 conditions for the
invariant measure.
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Summary

e We introduced a new algebraic formalism of trees to study the order for the
invariant measure of numerical integrators for the overdamped Langevin equation
in RY and on compact smooth manifolds of codimension one.

e The exotic aromatic forests formalism inherits the properties of the previously
introduced tree formalisms, as a composition law and a universal geometric

property.

e We recover efficient numerical methods, a systematic methodology to improve
order and a formal simplification of any numerical method that can be developed
in exotic aromatic B-series.

e Possible applications to partitioned problems or systems with perturbations, and

extensions to more general SDEs where f is not a gradient, on manifolds of any
codimension, or to SDEs with multiplicative noise of the form

dX = f(X)dt + £(X)dW.
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