Order conditions for sampling the invariant measure of ergodic SDEs in \mathbb{R}^d and on manifolds

Adrien Laurent Joint work with Gilles Vilmart

CODYSMA colloquium, July 2020

< □ > < 同 > < 回 > < 回 >

Contents

Long-time integration of Langevin dynamics

2 Exotic aromatic forests for the study of order conditions in \mathbb{R}^d

3 High order integrators on manifolds

References of this talk:

A. Laurent and G. Vilmart. Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs. arXiv:1707.02877. *Math. Comp.* (2020).
A. Laurent and G. Vilmart. Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds. arXiv:2006.09743. *Submitted*, 39 pages.

Contents

1 Long-time integration of Langevin dynamics

2) Exotic aromatic forests for the study of order conditions in \mathbb{R}^d

3 High order integrators on manifolds

The overdamped Langevin equation in molecular dynamics

Take N particles moving in a fluid. Then, the positions q(t) and the velocities p(t) of the particles satisfy the underdamped Langevin equation:

$$\begin{cases} dq(t) = p(t)dt \\ dp(t) = (-\nabla V(q(t)) - \gamma p(t))dt + \sqrt{\frac{2\gamma}{\beta}}dW(t) \end{cases}$$

In a high friction regime, we obtain the following simplified equation in \mathbb{R}^d called the overdamped Langevin equation, where $f = -\nabla V$:

$$dX(t) = f(X(t))dt + \sigma dW(t), \quad X(0) = X_0 \in \mathbb{R}^d.$$

イロト イヨト イヨト

The overdamped Langevin equation in molecular dynamics

Take N particles moving in a fluid. Then, the positions q(t) and the velocities p(t) of the particles satisfy the underdamped Langevin equation:

$$dq(t) = p(t)dt$$
$$dp(t) = (-\nabla V(q(t)) - \gamma p(t))dt + \sqrt{\frac{2\gamma}{\beta}}dW(t)$$

In a high friction regime, we obtain the following simplified equation in \mathbb{R}^d called the overdamped Langevin equation, where $f = -\nabla V$:

$$dX(t) = f(X(t))dt + \sigma dW(t), \quad X(0) = X_0 \in \mathbb{R}^d.$$

If there are constraints $\zeta(X) = 0$ (e.g. strong covalent bonds between atoms, or fixed angles in molecules), the solution lies on the manifold $\mathcal{M} = \{x \in \mathbb{R}^d, \zeta(x) = 0\}$ and we get the constrained Langevin dynamics:

$$dX(t) = \Pi_{\mathcal{M}}(X(t))f(X(t))dt + \sigma\Pi_{\mathcal{M}}(X(t)) \circ dW(t), \quad X(0) = X_0 \in \mathcal{M},$$

where $\Pi_{\mathcal{M}} : \mathbb{R}^d \to \mathbb{R}^{d \times d}$ is the projection operator on the tangent bundle of \mathcal{M} .

イロン イヨン イヨン イヨン 三日

A numerical scheme is said to have local weak order p if for all test functions ϕ ,

$$\left|\mathbb{E}[\phi(X_1)|X_0=x]-\mathbb{E}[\phi(X(h))|X(0)=x]\right|\leqslant C(x,\phi)h^{p+1}$$

Let $u(x,t) = \mathbb{E}[\phi(X(t))|X(0) = x]$, $t \ge 0$, then under certain assumptions, u satisfies the following backward Kolmogorov equation:

$$\frac{\partial u}{\partial t}(x,t) = \mathcal{L}u(x,t), \quad t > 0, \quad u(x,0) = \phi(x).$$

A numerical scheme is said to have local weak order p if for all test functions ϕ ,

$$\left|\mathbb{E}[\phi(X_1)|X_0=x]-\mathbb{E}[\phi(X(h))|X(0)=x]\right|\leqslant C(x,\phi)h^{p+1}$$

Let $u(x, t) = \mathbb{E}[\phi(X(t))|X(0) = x]$, $t \ge 0$, then under certain assumptions, u satisfies the following backward Kolmogorov equation:

$$\frac{\partial u}{\partial t}(x,t) = \mathcal{L}u(x,t), \quad t > 0, \quad u(x,0) = \phi(x).$$

The generator \mathcal{L} is a differential operator of order 2 given in \mathbb{R}^d by

$$\mathcal{L}\phi = \phi'f + \frac{\sigma^2}{2}\Delta\phi.$$

イロト イヨト イヨト

A numerical scheme is said to have local weak order p if for all test functions ϕ ,

$$\left|\mathbb{E}[\phi(X_1)|X_0=x]-\mathbb{E}[\phi(X(h))|X(0)=x]\right|\leqslant C(x,\phi)h^{p+1}$$

Let $u(x, t) = \mathbb{E}[\phi(X(t))|X(0) = x]$, $t \ge 0$, then under certain assumptions, u satisfies the following backward Kolmogorov equation:

$$\frac{\partial u}{\partial t}(x,t) = \mathcal{L}u(x,t), \quad t > 0, \quad u(x,0) = \phi(x).$$

The generator \mathcal{L} is a differential operator of order 2 given in \mathbb{R}^d by

$$\mathcal{L}\phi = \phi'f + rac{\sigma^2}{2}\Delta\phi.$$

On $\mathcal{M} = \zeta^{-1}(\{0\})$, we write $g = \nabla \zeta$ and $G = g^T g = \|g\|^2$, then \mathcal{L} is given by

$$\begin{aligned} \mathcal{L}\phi &= \phi'f + \frac{\sigma^2}{2}\Delta\phi - \frac{\sigma^2}{2}G^{-1}\operatorname{div}(g)\phi'g \\ &- G^{-1}(g,f)\phi'g + \frac{\sigma^2}{2}G^{-2}(g,g'g)\phi'g - \frac{\sigma^2}{2}G^{-1}\phi''(g,g). \end{aligned}$$

A numerical scheme is said to have local weak order p if for all test functions ϕ ,

$$\left|\mathbb{E}[\phi(X_1)|X_0=x]-\mathbb{E}[\phi(X(h))|X(0)=x]\right|\leqslant C(x,\phi)h^{p+1}$$

Let $u(x, t) = \mathbb{E}[\phi(X(t))|X(0) = x]$, $t \ge 0$, then under certain assumptions, u satisfies the following backward Kolmogorov equation:

$$\frac{\partial u}{\partial t}(x,t) = \mathcal{L}u(x,t), \quad t > 0, \quad u(x,0) = \phi(x).$$

The generator \mathcal{L} is a differential operator of order 2 given in \mathbb{R}^d by

$$\mathcal{L}\phi = \phi' f + rac{\sigma^2}{2} \Delta \phi.$$

On $\mathcal{M} = \zeta^{-1}(\{0\})$, we write $g = \nabla \zeta$ and $G = g^T g = \|g\|^2$, then \mathcal{L} is given by

$$\begin{aligned} \mathcal{L}\phi &= \phi'f + \frac{\sigma^2}{2}\Delta\phi - \frac{\sigma^2}{2}G^{-1}\operatorname{div}(g)\phi'g \\ &- G^{-1}(g,f)\phi'g + \frac{\sigma^2}{2}G^{-2}(g,g'g)\phi'g - \frac{\sigma^2}{2}G^{-1}\phi''(g,g). \end{aligned}$$

→ From now on, \mathcal{M} is either \mathbb{R}^d or a compact smooth manifold of codimension one such that $G(x) \neq 0$, for all $x \in \mathcal{M}$.

We develop the exact solution in Taylor series:

$$\mathbb{E}[\phi(X(h))|X(0) = x] = \phi(x) + h\mathcal{L}\phi(x) + \frac{h^2}{2!}\mathcal{L}^2\phi(x) + \frac{h^3}{3!}\mathcal{L}^3\phi(x) + \dots$$

We compare with the Taylor series of the numerical approximation:

$$\mathbb{E}[\phi(X_1)|X_0=x] = \phi(x) + h\mathcal{A}_0\phi(x) + h^2\mathcal{A}_1\phi(x) + h^3\mathcal{A}_2\phi(x) + \dots$$

Theorem (Talay, Tubaro (1990) and Milstein, Tretyakov (2004)) Under assumptions, the scheme is of weak order p if

$$\frac{1}{j!}\mathcal{L}^j=\mathcal{A}_{j-1}, \quad j=1,...,p.$$

 \rightarrow Tree formalism of B-series for deterministic problems: Butcher (1972) and Hairer, Wanner (1974),...

 \rightarrow Tree formalism for strong and weak errors on finite time: Burrage, Burrage (1996); Komori, Mitsui, Sugiura (1997); Rößler, Debrabant, Kværnø, ...

< ロ > < 同 > < 回 > < 回 >

Ergodicity, invariant measure

Ergodicity: there exists a unique invariant measure $d\mu_{\infty} = \rho_{\infty} d\sigma_{\mathcal{M}}$ such that

$$\lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \phi(X(s)) ds = \int_{\mathcal{M}} \phi(y) \rho_{\infty}(y) d\sigma_{\mathcal{M}}(y) \quad \text{almost surely,}$$

for all test functions ϕ and with the Euclidean canonical measure $d\sigma_{\mathcal{M}}$ on \mathcal{M} . The Gibbs density ρ_{∞} satisfies $\mathcal{L}^* \rho_{\infty} = 0$ and $\rho_{\infty}(x) = Z \exp(-\frac{2}{\sigma^2} V(x))$.

Order of convergence for the invariant measure

Definition (Convergence for the invariant measure)

We call error of the invariant measure the quantity

$$e(\phi,h) = \left| \lim_{N \to +\infty} \frac{1}{N+1} \sum_{n=0}^{N} \phi(X_n) - \int_{\mathbb{R}^d} \phi(y) \rho_{\infty}(y) d\sigma_{\mathcal{M}}(y) \right|.$$

The scheme is of order p if for all test function ϕ , $e(\phi, h) \leq C(\phi)h^p$.

Remark: a scheme of weak order p automatically has at least order p for the invariant measure. One can build high order scheme for the invariant measure with low weak order (see, e.g., Bou-Rabee, Owhadi, 2010 and Leimkuhler, Matthews, 2013).

Example (first introduced in Leimkuhler, Matthews, 2013)

$$X_{n+1} = X_n + hf(X_n) + \sigma\sqrt{h}\frac{\xi_n + \xi_{n+1}}{2}$$

The scheme has weak order 1 and order 2 for the invariant measure in \mathbb{R}^d .

Order of convergence for the invariant measure

Definition (Convergence for the invariant measure)

We call error of the invariant measure the quantity

$$e(\phi,h) = \left| \lim_{N \to +\infty} \frac{1}{N+1} \sum_{n=0}^{N} \phi(X_n) - \int_{\mathbb{R}^d} \phi(y) \rho_{\infty}(y) d\sigma_{\mathcal{M}}(y) \right|.$$

The scheme is of order p if for all test function ϕ , $e(\phi, h) \leq C(\phi)h^p$.

Theorem (L., V., 2020 on a compact smooth manifold \mathcal{M} Abdulle, V., Zygalakis, 2014 in \mathbb{R}^d Related work: Debussche, Faou, 2012; Kopec, 2013)

Under technical assumptions, if $\mathcal{A}_{j}^{*}\rho_{\infty} = 0$ in $L^{2}(d\sigma_{\mathcal{M}})$, j = 2, ..., p - 1, i.e. for all test functions ϕ ,

$$\int_{\mathcal{M}} \mathcal{A}_j \phi(\mathbf{y}) \rho_{\infty}(\mathbf{y}) d\sigma_{\mathcal{M}}(\mathbf{y}) = 0, \qquad j = 2, \dots, p-1,$$

then the numerical scheme has order p for the invariant measure.

Contents

Long-time integration of Langevin dynamics

2 Exotic aromatic forests for the study of order conditions in \mathbb{R}^d

3 High order integrators on manifolds

Example: the θ -method

Overdamped Langevin equation in \mathbb{R}^d :

$$dX = f(X)dt + \sigma dW, \quad f = -\nabla V$$

The θ -method:

$$X_{n+1} = X_n + h(1-\theta)f(X_n) + h\theta f(X_{n+1}) + \sigma\sqrt{h}\xi_n,$$

where $\xi_n \sim \mathcal{N}(0, I_d)$ are independent standard Gaussian variables.

Methodology:

- **(**) Compute the Taylor expansion of X_1 ,
- **②** Compute the Taylor expansion of $\phi(X_1)$,
- Sompute $\mathbb{E}[\phi(X_1)]$ and deduce the $\mathcal{A}_j\phi$,
- Simplify $\int_{\mathbb{R}^d} \mathcal{A}_j \phi(y) \rho_\infty(y) dy$.

Example: the θ -method

The θ -method:

$$X_{n+1} = X_n + h(1-\theta)f(X_n) + h\theta f(X_{n+1}) + \sigma \sqrt{h\xi_n},$$

where $\xi_n \sim \mathcal{N}(0, I_d)$ are independent standard Gaussian variables. An expansion in *h* yields, for $\xi \sim \mathcal{N}(0, I_d)$,

$$X_1 = x + \sqrt{h\sigma\xi} + hf + h\sqrt{h\theta\sigma}f'\xi + h^2\theta f'f + h^2\frac{\theta\sigma^2}{2}f''(\xi,\xi) + \dots$$

We deduce $\mathbb{E}[\phi(X_1)|X_0 = x] = \phi(x) + h\mathcal{L}\phi(x) + h^2\mathcal{A}_1\phi(x) + ...$, where

$$\mathcal{A}_{1}\phi = \mathbb{E}[\theta\phi'f'f + \frac{1}{2}\phi''(f,f) + \frac{\theta\sigma^{2}}{2}\phi'f''(\xi,\xi) + \theta\sigma^{2}\phi''(f'\xi,\xi) + \frac{\sigma^{2}}{2}\phi^{(3)}(f,\xi,\xi) + \frac{\sigma^{4}}{24}\phi^{(4)}(\xi,\xi,\xi,\xi)].$$

Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher (2008))

We use trees as a powerful notation for our differentials. We denote $F(\gamma)(\phi)$ the elementary differential of a tree γ .

•
$$F(\bullet)(\phi) = \phi$$

• $F(\bullet)(\phi) = \phi'f = \sum_i \partial_i \phi f_i$
• $F(\bullet)(\phi) = \phi''(f, f'f) = \sum_{i,j,k} \partial_{ij} \phi f_i \partial_k f_j f_k$

Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher (2008))

We use trees as a powerful notation for our differentials. We denote $F(\gamma)(\phi)$ the elementary differential of a tree γ .

•
$$F(\bullet)(\phi) = \phi$$

• $F(\bullet)(\phi) = \phi'f = \sum_i \partial_i \phi f_i$
• $F(\bullet)(\phi) = \phi''(f, f'f) = \sum_{i,j,k} \partial_{ij} \phi f_i \partial_k f_j f_k$

Aromatic forests: introduced by Chartier, Murua (2007) (See also Bogfjellmo (2015))

$$F(\bigcirc \bigcirc \bigcirc \bigcirc)(\phi) = \left(\sum \partial_i f_i\right) \times \left(\sum \partial_i f_j \partial_j f_i\right) \times \phi' f$$

Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher (2008))

We use trees as a powerful notation for our differentials. We denote $F(\gamma)(\phi)$ the elementary differential of a tree γ .

•
$$F(\bullet)(\phi) = \phi$$

• $F(\bullet)(\phi) = \phi'f = \sum_i \partial_i \phi f_i$
• $F(\bullet)(\phi) = \phi''(f, f'f) = \sum_{i,j,k} \partial_{ij} \phi f_i \partial_k f_j f_k$

Aromatic forests: introduced by Chartier, Murua (2007) (See also Bogfjellmo (2015))

$$F(\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc)(\phi) = \left(\sum \partial_i f_i\right) \times \left(\sum \partial_i f_j \partial_j f_i\right) \times \phi' f$$

Grafted aromatic forests: ξ is represented by crosses (in the spirit of P-series)

$$F(\overset{\flat}{\checkmark})(\phi) = \sigma^2 \phi''(f'\xi,\xi) \quad \text{and} \quad F(\overset{\flat}{\bullet})(\phi) = \sigma^2 \phi' f''(\xi,\xi).$$

イロン イ団 とく ヨン イヨン

Grafted forests for the θ -method

For the $\boldsymbol{\theta}$ method,

$$\mathbb{E}[\phi(X_1)|X_0=x] = \phi(x) + h\mathcal{L}\phi(x) + h^2\mathcal{A}_1\phi(x) + \dots$$

and \mathcal{A}_1 is given by

$$\begin{split} \mathcal{A}_{1}\phi &= \mathbb{E}\big[\theta\phi'f'f + \frac{1}{2}\phi''(f,f) + \frac{\theta\sigma^{2}}{2}\phi'f''(\xi,\xi) + \theta\sigma^{2}\phi''(f'\xi,\xi) \\ &+ \frac{\sigma^{2}}{2}\phi^{(3)}(f,\xi,\xi) + \frac{\sigma^{4}}{24}\phi^{(4)}(\xi,\xi,\xi,\xi)\big] \\ &= \mathbb{E}\bigg[F\bigg(\theta + \frac{1}{2}\bullet + \frac{\theta}{2}\bullet + \theta \bullet + \theta \bullet + \frac{1}{2}\bullet + \frac$$

Exotic aromatic forests: adding lianas (Math. Comp. 2020)

We add lianas to the aromatic forests.

Examples

$$F(\mathbf{L}) = \sigma^{2} \sum_{i} \phi''(f'(e_{i}), e_{i}).$$

$$F(\mathbf{L}) = \sigma^{2} \sum_{i} \phi''(e_{i}, e_{i}) = \sigma^{2} \Delta \phi.$$

$$F(\mathbf{L}) = \sigma^{4} \sum_{i,j} \phi''(e_{i}, f'''(e_{j}, e_{j}, e_{i})) = \sigma^{4} \sum_{i} \phi''(e_{i}, (\Delta f)'(e_{i})).$$
If γ is the following forest

then $F(\gamma)(\phi) = \sigma^8 \sum_{i,j,k=1}^d \operatorname{div}(\partial_i f) \times \phi'((\partial_{kl} f)'(f''(\partial_{ijj} f, \partial_{kl} f))).$

Remark: the forests do not depend on the dimension of the problem.

Main tool 1: expectation of a grafted exotic aromatic forest

The following result is a consequence of the Isserlis theorem.

Theorem

If γ is a grafted exotic aromatic rooted forest with an even number of crosses, $\mathbb{E}[F(\gamma)(\phi)]$ is the sum of all possible forests obtained by linking the crosses of γ pairwisely with lianas.

Example

$$\mathbb{E}\left[F\left(\overset{\times}{\checkmark}\overset{\times}{\checkmark}\right)(\phi)\right] = \sigma^{4}\mathbb{E}[\phi^{(4)}(\xi,\xi,\xi,\xi)] = \sigma^{4}\sum_{ijkl}\partial_{ijkl}\phi\mathbb{E}[\xi_{i}\xi_{j}\xi_{k}\xi_{l}]$$
$$= \sigma^{4}\sum_{i}\partial_{iiii}\phi\mathbb{E}[\xi_{i}^{4}] + 3\sigma^{4}\sum_{\substack{i,j\\i\neq j}}\partial_{iijj}\phi\mathbb{E}[\xi_{i}^{2}]\mathbb{E}[\xi_{j}^{2}]$$
$$= 3\sigma^{4}\sum_{i,j}\partial_{iijj}\phi = 3F\left(\textcircled{\textcircled{}}{\textcircled{}}{\textcircled{}}{\textcircled{}}\right)(\phi).$$

Explicit formula for \mathcal{A}_1

The operator \mathcal{A}_1 given by

$$\mathbb{E}[\phi(X_1)|X_0=x] = \phi(x) + h\mathcal{L}\phi(x) + h^2\mathcal{A}_1\phi(x) + \dots$$

is now convenient to write with exotic aromatic trees.

 $\begin{array}{l} \text{Goal: simplify } \int\limits_{\mathbb{R}^d} \mathcal{A}_j \phi \rho_\infty dy, \text{ i.e. write it as } \int\limits_{\mathbb{R}^d} \phi'(\widetilde{f}) \rho_\infty dy. \end{array}$

$$\int_{\mathbb{R}^d} F(\mathbf{y})(\phi) \rho_{\infty} d\mathbf{y} = \sigma^2 \sum_{i,j} \int_{\mathbb{R}^d} \frac{\partial^3 \phi}{\partial x_i \partial x_j \partial x_j} f_i \rho_{\infty} d\mathbf{y}$$
$$= -\sigma^2 \sum_{i,j} \left[\int_{\mathbb{R}^d} \frac{\partial \phi}{\partial x_i \partial x_j} \frac{\partial f_i}{\partial x_j} \rho_{\infty} d\mathbf{y} + \int_{\mathbb{R}^d} \frac{\partial \phi}{\partial x_i \partial x_j} f_i \frac{\partial \rho_{\infty}}{\partial x_j} d\mathbf{y} \right]$$

Goal: simplify $\int_{\mathbb{R}^d} \mathcal{A}_j \phi \rho_\infty dy$, i.e. write it as $\int_{\mathbb{R}^d} \phi'(\tilde{f}) \rho_\infty dy$.

$$\int_{\mathbb{R}^d} F(\mathbf{x})(\phi) \rho_{\infty} d\mathbf{y} = \sigma^2 \sum_{i,j} \int_{\mathbb{R}^d} \frac{\partial^3 \phi}{\partial x_i \partial x_j \partial x_j} f_i \rho_{\infty} d\mathbf{y}$$
$$= -\sigma^2 \sum_{i,j} \left[\int_{\mathbb{R}^d} \frac{\partial \phi}{\partial x_i \partial x_j} \frac{\partial f_i}{\partial x_j} \rho_{\infty} d\mathbf{y} + \int_{\mathbb{R}^d} \frac{\partial \phi}{\partial x_i \partial x_j} f_i \frac{\partial \rho_{\infty}}{\partial x_j} d\mathbf{y} \right]$$

If
$$f = -\nabla V$$
, $\rho_{\infty}(x) = Ze^{-2V(x)/\sigma^2}$ and $\nabla \rho_{\infty} = \frac{2}{\sigma^2} f \rho_{\infty}$. Then

$$\int_{\mathbb{R}^d} F(\overset{\bullet}{\smile})(\phi) \rho_{\infty} dy = -\int_{\mathbb{R}^d} F(\overset{\bullet}{\bullet})(\phi) \rho_{\infty} dy - 2 \int_{\mathbb{R}^d} F(\overset{\bullet}{\bullet})(\phi) \rho_{\infty} dy.$$

We write

Main tool 2: integration by parts

Theorem

Integrating by part an exotic aromatic forest γ amounts to unplug a liana from the root, and to plug it either to another node of γ or to connect it to a new node, transform the liana in an edge and multiply by 2.

For a node v of the exotic aromatic forest γ , it rewrites in

$$\dot{\gamma_v} \sim -2 \gamma_v$$
.

Theorem

Take a method of order p. If $A_p = F(\gamma_p)$ for a certain linear combination of exotic aromatic forests γ_p , if $\gamma_p \sim \tilde{\gamma_p}$ and $F(\tilde{\gamma_p}) = 0$, then the method is at least of order p + 1 for the invariant measure.

Application to the construction of high order integrators

Theorem (Conditions for order p for the invariant measure in \mathbb{R}^d) Order conditions for a class of stochastic Runge-Kutta methods:

$$Y_i^n = X_n + h \sum_{j=1}^s a_{ij} f(Y_j^n) + d_i \sigma \sqrt{h} \xi_n, \qquad i = 1, ..., s,$$

$$X_{n+1} = X_n + h \sum_{i=1}^s b_i f(Y_i^n) + \sigma \sqrt{h} \xi_n,$$

Order	Tree $ au$	$F(\tau)(\phi)$	Order condition
1	1	$\phi' f$	$\sum b_i = 1$
2	Ī	$\phi' f' f$	$\sum b_i c_i - 2 \sum b_i d_i = -\frac{1}{2}$
	$\mathbf{\hat{f}}$	$\sigma^2 \phi' \Delta f$	$\sum b_i d_i^2 - 2 \sum b_i d_i = -\frac{1}{2}$
3			

Postprocessors

Idea: extend to the context of ergodic SDEs the popular idea of effective order for ODEs from Butcher (1969),

$$y_{n+1} = \chi_h \circ K_h \circ \chi_h^{-1}(y_n), \qquad y_n = \chi_h \circ K_h^n \circ \chi_h^{-1}(y_0).$$

Postprocessing: $\overline{X}_n = G_n(X_n)$, with weak Taylor series expansion

$$\mathbb{E}(\phi(G_n(x))) = \phi(x) + h^{\rho}\overline{\mathcal{A}}_{\rho}\phi(x) + \mathcal{O}(h^{\rho+1}).$$

Theorem (V. (2015))

Under technical assumptions, assume that $X_n \mapsto X_{n+1}$ and \overline{X}_n satisfy

$$\mathcal{A}_j^* \rho_{\infty} = 0, \quad j < p,$$

$$(\mathcal{A}_{\rho} + [\mathcal{L}, \overline{\mathcal{A}}_{\rho}])^* \rho_{\infty} = 0,$$

then the scheme has order p + 1 for the invariant measure.

Remark: the postprocessing is needed only at the end of the time interval (not at each time step).

Postprocessors

Theorem

If we denote γ the exotic aromatic B-series such that $F(\gamma) = (\mathcal{A}_p + [\mathcal{L}, \overline{\mathcal{A}_p}])$ and if $\gamma \sim 0$, then $\overline{X_n}$ is of order p + 1 for the invariant measure.

Theorem (Conditions for order *p* using postprocessors)

Order	Tree τ	Order conditions			
2	ŀ	$\sum b_i c_i - 2 \sum b_i d_i - 2 \sum \overline{b_i} + 2 \overline{d_0}^2 = -\frac{1}{2}$			
	$\hat{\mathbf{Y}}$	$\sum b_i d_i^2 - 2 \sum b_i d_i - \sum \overline{b_i} + \overline{d_0}^2 = -\frac{1}{2}$			

Example (first introduced in Leimkhuler, Matthews, 2013)

$$X_{n+1} = X_n + hf(X_n + \frac{\sigma}{2}\sqrt{h}\xi_n) + \sigma\sqrt{h}\xi_n, \qquad \overline{X_n} = X_n + \frac{1}{2}\sigma\sqrt{h}\overline{\xi_n}.$$

The scheme has order 1 of accuracy for the invariant measure, but \overline{X}_n has order 2.

Contents

Long-time integration of Langevin dynamics

Exotic aromatic forests for the study of order conditions in \mathbb{R}^d

3 High order integrators on manifolds

The Euler integrator for constrained Langevin dynamics

Constrained Langevin dynamics on the manifold $\mathcal{M} = \{x \in \mathbb{R}^d, \zeta(x) = 0\}$

$$dX = \Pi_{\mathcal{M}}(X)f(X)dt + \sigma\Pi_{\mathcal{M}}(X) \circ dW.$$

Example (Euler integrator)

Two widely used integrators are the Euler scheme with explicit projection direction, where $g = \nabla \zeta$

$$X_{n+1} = X_n + hf(X_n) + \sigma\sqrt{h}\xi_n + \lambda g(X_n), \quad \zeta(X_{n+1}) = 0,$$

and alternatively the Euler scheme with implicit projection direction

$$X_{n+1} = X_n + hf(X_n) + \sigma\sqrt{h}\xi_n + \lambda g(X_{n+1}), \quad \zeta(X_{n+1}) = 0.$$

→ References: Ciccotti, Kapral, Vanden-Eijnden (2005); Lelièvre, Le Bris, Vanden-Eijnden (2008); Lelièvre, Rousset, Stolz (2010); ...

The Euler integrator for constrained Langevin dynamics

Constrained Langevin dynamics on the manifold $\mathcal{M} = \{x \in \mathbb{R}^d, \zeta(x) = 0\}$

$$dX = \Pi_{\mathcal{M}}(X)f(X)dt + \sigma\Pi_{\mathcal{M}}(X) \circ dW.$$

Example (Euler integrator)

Two widely used integrators are the Euler scheme with explicit projection direction, where $g = \nabla \zeta$

$$X_{n+1} = X_n + hf(X_n) + \sigma\sqrt{h}\xi_n + \lambda g(X_n), \quad \zeta(X_{n+1}) = 0,$$

and alternatively the Euler scheme with implicit projection direction

$$X_{n+1} = X_n + hf(X_n) + \sigma\sqrt{h}\xi_n + \lambda g(X_{n+1}), \quad \zeta(X_{n+1}) = 0.$$

 \rightarrow References: Ciccotti, Kapral, Vanden-Eijnden (2005); Lelièvre, Le Bris, Vanden-Eijnden (2008); Lelièvre, Rousset, Stolz (2010); . . .

Issue: both Euler integrators have order 1 for the invariant measure.

The Euler integrator for constrained Langevin dynamics

A new class of RK methods for constrained Langevin In the spirit of the methods RATTLE (Lelièvre, Rousset, Stolz (2019)) and

SPARK (Jay (1998)), we use the following class of Runge-Kutta integrators:

$$Y_i = X_n + h \sum_{j=1}^s a_{ij} f(Y_j) + \sigma \sqrt{h} d_i \xi_n + \lambda_i \sum_{j=1}^s \hat{a}_{ij} g(Y_j), \quad i = 1, \dots, s,$$

$$\zeta(Y_i) = 0 \quad \text{if} \quad \delta_i = 1, \quad i = 1, \dots, s,$$

$$X_{n+1} = Y_s,$$

Butcher tableau with c = A1, $\delta = \hat{A}1 \in \{0, 1\}$, $b = A_{s,:}$ and $\hat{b} = \hat{A}_{s,:}$

Example

The Euler integrator $X_{n+1} = X_n + hf(X_n) + \sigma\sqrt{h}\xi_n + \lambda g(X_{n+1})$, $\zeta(X_{n+1}) = 0$ has the following Butcher tableau

Order conditions for sampling Langevin dynamics on $\ensuremath{\mathcal{M}}$

Theorem (Runge-Kutta conditions)

- Consistency conditions: $c_s = d_s = 1$ and $\sum_{j=1}^s \hat{b}_j d_j = \sum_{j=1}^s \hat{b}_j \delta_j d_j$
- 22 cond. for order 2 for the invariant measure (resp. 11 cond. if $\delta = 1$):

$$\sum_{i=1}^{s} b_{j}c_{j} = 2\sum_{j=1}^{s} b_{j}d_{j} - \frac{1}{2}, \quad \sum_{i,j=1}^{s} \hat{b}_{i}d_{i}^{2}\hat{a}_{ij}d_{j} = \sum_{i,j=1}^{s} \hat{b}_{i}d_{i}\hat{a}_{ij}d_{j} + \frac{1}{2}\left(\sum_{i=1}^{s} \hat{b}_{i}d_{i}\right)^{2}, \quad \dots$$

• 25 cond. for weak order 2 (conditions do not have a solution if $\delta = 1$).

Example

An integrator of order 2 for the invariant measure if $\mathcal M$ is the sphere

$$Y_{1} = X_{n} + h\left(\frac{3}{2} - \sqrt{2}\right)f(Y_{2}) + \sigma\sqrt{h}\left(1 - \frac{\sqrt{2}}{2}\right)\xi_{n} + \lambda_{1}(2g(Y_{1}) - g(Y_{2})),$$

$$Y_{2} = X_{n} + hf(Y_{1}) + \sigma\sqrt{h}\xi_{n} + \lambda_{2}g(Y_{1}), \quad \zeta(Y_{1}) = \zeta(Y_{2}) = 0,$$

$$X_{n+1} = Y_{2}.$$

• We introduce a 4-stages RK method of order 2 for the invariant measure that uses only 3 evaluations of *f* per step.

$$\begin{split} Y_{1} &= X_{n} + \sigma \sqrt{h} d_{1}\xi_{n} + \lambda_{1}g(Y_{1}), \\ Y_{2} &= X_{n} + hc_{2}f(Y_{1}) + \sigma \sqrt{h} d_{2}\xi_{n} + \lambda_{2} \left[\hat{a}_{21}g(Y_{1}) + \hat{a}_{22}g(Y_{2}) \right], \\ Y_{3} &= X_{n} + hc_{3}f(Y_{2}) + \sigma \sqrt{h} d_{3}\xi_{n} + \lambda_{3} \left[\hat{a}_{31}g(Y_{1}) + \hat{a}_{32}g(Y_{2}) + \hat{a}_{33}g(Y_{3}) \right], \\ X_{n+1} &= X_{n} + h \sum_{j=1}^{3} \hat{a}_{4j}f(Y_{j}) + \sigma \sqrt{h}\xi_{n} + \lambda_{4} \sum_{j=1}^{3} \hat{a}_{4j}g(Y_{j}), \end{split}$$

where $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are such that $\zeta(Y_1) = \zeta(Y_2) = \zeta(Y_3) = \zeta(X_{n+1}) = 0$.

Butcher tableau:

0	0	0	0	0	1	1	0	0	0	d_1
<i>c</i> ₂	<i>c</i> ₂	0	0	0	1	\hat{a}_{21}	â ₂₂	0	0	d ₂
<i>C</i> 3	0	<i>c</i> ₃	0	0	1	â ₃₁	â ₃₂	â ₃₃	0	d ₃
1	â ₄₁	â ₄₂	â ₄₃	0	1	\hat{a}_{41}	â ₄₂	â ₄₃	0	1
	â ₄₁	â ₄₂	â ₄₃	0		\hat{a}_{41}	â ₄₂	â ₄₃	0	

• We introduce a 4-stages RK method of order 2 for the invariant measure that uses only 3 evaluations of *f* per step.

• We plot the invariant measure error versus the timestep *h* for the order 2 integrator and the Euler scheme when \mathcal{M} is the unit sphere in \mathbb{R}^3 , with the constraint $\zeta(x) = (||x||^2 - 1)/2$, the potential $V(x) = 25(1 - x_1^2 - x_2^2)$, the final time T = 10 and 10^7 trajectories.

• We introduce a 4-stages RK method of order 2 for the invariant measure that uses only 3 evaluations of *f* per step.

• We plot the invariant measure error versus the timestep h for the order 2 integrator and the Euler scheme when \mathcal{M} is a torus in \mathbb{R}^3 , with the constraint $\zeta(x) = (||x||^2 + 8)^2 - 36(x_1^2 + x_2^2)$, the potential $V(x) = 25(x_3 - 1)^2$, the final time T = 20 and 10^7 trajectories.

• We introduce a 4-stages RK method of order 2 for the invariant measure that uses only 3 evaluations of *f* per step.

• We compare the approximations $\overline{I}_{\text{Euler}}$ and \overline{I}_2 given by the Euler scheme and the new order 2 Runge-Kutta integrator of $I(m) = \int_{\text{SL}(m)} \text{Tr}(x) d\mu_{\infty}(x)$ on the special linear group $\mathcal{M} = \text{SL}(m)$ in \mathbb{R}^{m^2} with the constraint $\zeta(x) = \det(x) - 1$, the final time T = 10 with the stepsize $h = T/2^{12}$, 10^6 trajectories and the potential

$$V(x) = 25 \operatorname{Tr}((x - I_{m^2})^T (x - I_{m^2})).$$

т	$\dim(SL(m))$	<i>I</i> (<i>m</i>)	error for \overline{I}_{Euler}	error for \overline{I}_2
2	3	2.00967	$6.4 \cdot 10^{-4}$	4.4 · 10 ⁻⁵
3	8	3.01954	$1.1 \cdot 10^{-3}$	$2.0 \cdot 10^{-4}$
4	15	4.02930	$1.6 \cdot 10^{-3}$	$2.3 \cdot 10^{-4}$

イロト イヨト イヨト

Exotic aromatic forests: adding scalar product (Submitted. 2020) We use partitioned forests and we introduce a new kind of edge that represents the scalar product.

Examples

$$\begin{split} \mathcal{F}(\overset{\circ}{\longrightarrow}) &= G^{-1}\sum_{i,j}g_i\partial_j f_i g_j = G^{-1}(g,f'g).\\ \mathcal{F}(\overset{\circ}{\longrightarrow}) &= \sigma^2 G^{-2}\sum_{i,j,k}g_i\partial_{jk}g_i g_j g_k = \sigma^2 G^{-2}(g,g''(g,g)). \end{split}$$

In general, we can get forests of the form

where the associated differential is

$$F(\gamma)(\phi) = \sigma^8 G^{-2} \sum_{i_1,\dots,i_6=1}^d \sum_{j_1,\dots,j_3=1}^d \partial_{j_1 j_1} f_{i_2} \ \partial_{j_2 j_3} f_{i_5} \ \partial_{j_3} f_{i_6} \ \partial_{i_2} g_{i_1} \ \partial_{j_2} g_{i_3} \ \partial_{i_4 i_5} g_{i_4} \ g_{i_6} \ \partial_{i_1 i_3} \phi.$$

We use partitioned forests and we introduce a new kind of edge that represents the scalar product.

Examples

$$\begin{aligned} & \mathcal{F}(\overset{\circ}{\longrightarrow}) = G^{-1} \sum_{i,j} g_i \partial_j f_i g_j = G^{-1}(g, f'g). \\ & \mathcal{F}(\overset{\circ}{\longrightarrow}) = \sigma^2 G^{-2} \sum_{i,j,k} g_i \partial_{jk} g_i g_j g_k = \sigma^2 G^{-2}(g, g''(g, g)). \end{aligned}$$

On the manifold \mathcal{M} , the generator \mathcal{L} is given by

$$\begin{aligned} \mathcal{L}\phi &= \phi'f - G^{-1}(g,f)\phi'g - \frac{\sigma^2}{2}G^{-1}\operatorname{div}(g)\phi'g + \frac{\sigma^2}{2}G^{-2}(g,g'g)\phi'g \\ &+ \frac{\sigma^2}{2}\Delta\phi - \frac{\sigma^2}{2}G^{-1}\phi''(g,g) \\ &= F(\mathbf{\bullet})(\phi) - G^{-1}(g,f)\phi'g - \frac{1}{2}F(\mathbf{\bullet})(\phi) + \frac{\sigma^2}{2}G^{-2}(g,g'g)\phi'g \\ &+ \frac{\sigma^2}{2}\Delta\phi - \frac{1}{2}F(\mathbf{\bullet})(\phi) \end{aligned}$$

We use partitioned forests and we introduce a new kind of edge that represents the scalar product.

Examples

$$\begin{split} \mathcal{F}(\overset{\circ}{\rightarrow}) &= G^{-1} \sum_{i,j} g_i \partial_j f_i g_j = G^{-1}(g, f'g). \\ \mathcal{F}(\overset{\circ}{\rightarrow}) &= \sigma^2 G^{-2} \sum_{i,j,k} g_i \partial_{jk} g_i g_j g_k = \sigma^2 G^{-2}(g, g''(g, g)). \end{split}$$

On the manifold \mathcal{M} , the generator \mathcal{L} is given by

$$\begin{aligned} \mathcal{L}\phi &= \phi'f - G^{-1}(g,f)\phi'g - \frac{\sigma^2}{2}G^{-1}\operatorname{div}(g)\phi'g + \frac{\sigma^2}{2}G^{-2}(g,g'g)\phi'g \\ &+ \frac{\sigma^2}{2}\Delta\phi - \frac{\sigma^2}{2}G^{-1}\phi''(g,g) \\ &= F(\mathbf{\bullet})(\phi) - G^{-1}(g,f)\phi'g - \frac{1}{2}F(\mathbf{\bullet})(\phi) + \frac{\sigma^2}{2}G^{-2}(g,g'g)\phi'g \\ &+ \frac{1}{2}F(\mathbf{\bullet})(\phi) - \frac{1}{2}F(\mathbf{\bullet})(\phi) \end{aligned}$$

We use partitioned forests and we introduce a new kind of edge that represents the scalar product.

Examples

$$\begin{split} \mathcal{F}(\overset{\circ}{\longrightarrow}) &= G^{-1} \sum_{i,j} g_i \partial_j f_i g_j = G^{-1}(g, f'g). \\ \mathcal{F}(\overset{\circ}{\longrightarrow}) &= \sigma^2 G^{-2} \sum_{i,j,k} g_i \partial_{jk} g_i g_j g_k = \sigma^2 G^{-2}(g, g''(g, g)). \end{split}$$

On the manifold \mathcal{M} , the generator \mathcal{L} is given by

$$\mathcal{L}\phi = \phi'f - \mathbf{G}^{-1}(\mathbf{g}, \mathbf{f})\phi'\mathbf{g} - \frac{\sigma^2}{2}\mathbf{G}^{-1}\operatorname{div}(\mathbf{g})\phi'\mathbf{g} + \frac{\sigma^2}{2}\mathbf{G}^{-2}(\mathbf{g}, \mathbf{g}'\mathbf{g})\phi'\mathbf{g}$$
$$+ \frac{\sigma^2}{2}\Delta\phi - \frac{\sigma^2}{2}\mathbf{G}^{-1}\phi''(\mathbf{g}, \mathbf{g})$$
$$= F(\mathbf{\bullet})(\phi) - F(\mathbf{o} \mathbf{\bullet})(\phi) - \frac{1}{2}F(\mathbf{\bullet})(\phi) + \frac{1}{2}F(\mathbf{o} \mathbf{\bullet})(\phi) + \frac{1}{2}F(\mathbf{o} \mathbf{\bullet})(\phi)$$
$$+ \frac{1}{2}F(\mathbf{\bullet})(\phi) - \frac{1}{2}F(\mathbf{\bullet} \mathbf{\bullet})(\phi)$$

We use partitioned forests and we introduce a new kind of edge that represents the scalar product.

Examples

$$\begin{aligned} & \mathcal{F}(\overset{\circ}{\longrightarrow}) = G^{-1} \sum_{i,j} g_i \partial_j f_i g_j = G^{-1}(g, f'g). \\ & \mathcal{F}(\overset{\circ}{\longrightarrow}) = \sigma^2 G^{-2} \sum_{i,j,k} g_i \partial_{jk} g_i g_j g_k = \sigma^2 G^{-2}(g, g''(g, g)). \end{aligned}$$

On the manifold \mathcal{M} , the generator \mathcal{L} is given by

$$\begin{aligned} \mathcal{L}\phi &= \phi'f - G^{-1}(g,f)\phi'g - \frac{\sigma^2}{2}G^{-1}\operatorname{div}(g)\phi'g + \frac{\sigma^2}{2}G^{-2}(g,g'g)\phi'g \\ &+ \frac{\sigma^2}{2}\Delta\phi - \frac{\sigma^2}{2}G^{-1}\phi''(g,g) \\ &= F\left(\mathbf{\hat{I}} - \mathbf{\hat{o}} + \mathbf{\hat{o}} - \frac{1}{2} \bigcirc \mathbf{\hat{o}} + \frac{1}{2} \mathbf{\hat{o}} - \frac{1}{2} \bigcirc \mathbf{\hat{o}} \right)(\phi). \end{aligned}$$

Similarly, we obtain an expansion in exotic aromatic forests of the operators A_j . Goal: find conditions such that $A_i^* \rho_{\infty} = 0$ in $L^2(d\sigma_M)$.

Isometric equivariance of exotic aromatic B-series Examples of aromatic forests:

$$F(\mathbf{I}) = f'f = \sum_{i} \partial_i f f_i$$

$$\mathsf{F}(\mathbf{\hat{\bigcirc}}) = \mathsf{div}(f) = \sum_{i} \partial_{i} f_{i}$$

Examples of exotic aromatic forests:

$$F(\stackrel{\bullet}{\smile}) = \Delta f = \sum_{i} \partial_{ii} f \qquad F(\stackrel{\bullet}{\leftarrow}) = \|f\|^{2} = \sum_{i} f_{i} f_{i}$$

Definition

Affine equivariant map: invariant under an affine coordinates map. Isometric equivariant map: invariant under an isometric coordinates map.

Local affine equivariant maps are exactly aromatic B-series methods (see McLachlan, Modin, Munthe-Kaas, Verdier, 2016).

Proposition

Exotic aromatic B-series methods are isometric equivariant.

Converse: ongoing work with H. Munthe-Kaas and O. Verdier.

Lemma (Integration by parts on \mathcal{M}) If $\psi : \mathbb{R}^d \to \mathbb{R}$ and $H : \mathbb{R}^d \to \mathbb{R}^d$ are smooth functions, then we have $\int_{\mathcal{M}} (\nabla_{\mathcal{M}} \psi, H) d\sigma_{\mathcal{M}} = -\int_{\mathcal{M}} \psi \operatorname{div}_{\mathcal{M}} (\Pi_{\mathcal{M}} H) d\sigma_{\mathcal{M}},$ where $\nabla_{\mathcal{M}} \psi := \Pi_{\mathcal{M}} \nabla \psi$ and $\operatorname{div}_{\mathcal{M}}(H) := \operatorname{div}(H) - G^{-1}(g, H'g).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma (Integration by parts on \mathcal{M})

If $\psi: \mathbb{R}^d \to \mathbb{R}$ and $H: \mathbb{R}^d \to \mathbb{R}^d$ are smooth functions, then we have

$$\begin{split} \int_{\mathcal{M}} \Big[G^{-k} \psi' H - G^{-(k+1)}(g, H) \psi' g \Big] d\mu_{\infty} &= \int_{\mathcal{M}} \Big[G^{-(k+1)}(g, H'g) \psi \\ &- (2k+1) G^{-(k+2)}(g, g'g)(g, H) \psi - G^{-k} \operatorname{div}(H) \psi \\ &+ 2k G^{-(k+1)}(g, g'H) \psi + G^{-(k+1)} \operatorname{div}(g)(g, H) \psi \\ &+ \frac{2}{\sigma^2} G^{-(k+1)}(g, f)(g, H) \psi - \frac{2}{\sigma^2} G^{-k}(f, H) \psi \Big] d\mu_{\infty}. \end{split}$$

Lemma (Integration by parts on \mathcal{M})

If $\psi: \mathbb{R}^d \to \mathbb{R}$ and $H: \mathbb{R}^d \to \mathbb{R}^d$ are smooth functions, then we have

$$\begin{split} \int_{\mathcal{M}} \Big[G^{-k} \psi' H - G^{-(k+1)}(g, H) \psi' g \Big] d\mu_{\infty} &= \int_{\mathcal{M}} \Big[G^{-(k+1)}(g, H'g) \psi \\ &- (2k+1) G^{-(k+2)}(g, g'g)(g, H) \psi - G^{-k} \operatorname{div}(H) \psi \\ &+ 2k G^{-(k+1)}(g, g'H) \psi + G^{-(k+1)} \operatorname{div}(g)(g, H) \psi \\ &+ \frac{2}{\sigma^2} G^{-(k+1)}(g, f)(g, H) \psi - \frac{2}{\sigma^2} G^{-k}(f, H) \psi \Big] d\mu_{\infty}. \end{split}$$

For integrating by parts an exotic aromatic forests in the direction of a liana, it rewrites into

$$\dot{\gamma_{\nu}} - \dot{\gamma_{\nu}} \sim -(N_g(\gamma)+1) \overset{\circ}{\longrightarrow} \gamma_{\nu} + N_g(\gamma) \gamma_{\nu} + \overset{\circ}{\bigcirc} \gamma_{\nu}^{2} + 2 \overset{\circ}{\longrightarrow} \gamma_{\nu}^{2} - 2 \gamma_{\nu}^{2}$$

Integration by parts of exotic aromatic forests:

$$\dot{\gamma_{v}} - \dot{\gamma_{v}} \sim -(N_{g}(\gamma)+1) \sim \gamma_{v} + N_{g}(\gamma) \gamma_{v} + \circ \gamma_{v} + 2 \sim \gamma_{v} - 2 \gamma_{v}$$

0

Example

For $\gamma = \bigcirc$ and v = r the root, we get

$$(\bigcirc) - \bigcirc \sim - = \downarrow \bigcirc + \bigcirc \bigcirc + 2 = \bigcirc -2 \bigcirc .$$

Application: We have $\int_{\mathcal{M}} \mathcal{A}_1 \phi d\mu_\infty = \int_{\mathcal{M}} \mathcal{A}_1^0 \phi d\mu_\infty$ where

$$\mathcal{A}_1^0 = F\Big((b^T d - \hat{b}^T d) \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} + (b^T c - 2b^T d + \frac{1}{2}) \overset{\bullet}{\bullet} + 75 \text{ forests}\Big).$$

Choosing the coefficients such that $\mathcal{A}_1^0 = 0$ yields the order 2 conditions for the invariant measure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

• We introduced a new algebraic formalism of trees to study the order for the invariant measure of numerical integrators for the overdamped Langevin equation in \mathbb{R}^d and on compact smooth manifolds of codimension one.

• The exotic aromatic forests formalism inherits the properties of the previously introduced tree formalisms, as a composition law and a universal geometric property.

• We recover efficient numerical methods, a systematic methodology to improve order and a formal simplification of any numerical method that can be developed in exotic aromatic B-series.

• Possible applications to partitioned problems or systems with perturbations, and extensions to more general SDEs where f is not a gradient, on manifolds of any codimension, or to SDEs with multiplicative noise of the form

$$dX = f(X)dt + \Sigma(X)dW.$$