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Abstract

W E derive a new methodology for the construction of
high order integrators for sampling the invariant mea-

sure of ergodic stochastic differential equations subjected
to a scalar constraint. For a class of Runge-Kutta type
methods, we derive the conditions for the order two of accu-
racy. Numerical experiments in dimension 3 on the sphere
and the torus confirm the theoretical findings. We also dis-
cuss a possible extension of the exotic aromatic B-series
formalism.

1. Long time approximation of constrained ergodic
SDEs

WE consider (Stratonovich) stochastic differential equa-
tions in Rd, subjected to a smooth scalar constraint

ζ = 0, that have the form

dX = ΠM(X)f (X)dt + ΠM(X)Σ(X) ◦ dW, (1.1)

where X(0) = X0 ∈M, ζ : Rd→ R,M = {x ∈ Rd, ζ(x) = 0}
is a compact smooth manifold orM = Rd, ΠM : Rd→ Rd×d
is the orthogonal projection on the tangent bundle of M,
f : Rd → Rd and Σ: Rd → Rd×d are smooth and W is a
standard d-dimensional Brownian motion.

Equations of the form (1.1) appear naturally when studying
conservative SDEs, that is, SDEs possessing an invariant
H. The solution of conservative SDEs are subjected to the
constraint ζ = 0 with ζ = H −H(X0). The major motivation
of this work appears in computational problems in molec-
ular dynamics with the constrained overdamped Langevin
equation (obtained in the particular case where Σ = σId)

dX = ΠM(X)f (X)dt + σΠM(X) ◦ dW, (1.2)

with σ ∈ R, f = −∇V and V : Rd→ R is smooth. The over-
damped Langevin equation is widely used to model the mo-
tion of a set of particles subjected to a potential V in a high
friction regime. The possible constraints can be induced
for example by strong covalent bonds between atoms, or
fixed angles in molecules. We refer to [5] for further details
on applications and numerical methods for sampling con-
strained SDEs.

Weak error: A numerical scheme (Xn)n is said to have lo-
cal weak order p if for every test function φ,

|E[φ(X1)|X0 = x]− E[φ(X(h))|X(0) = x]| ≤ C(x, φ)hp+1.

The backward Kolmogorov equation yields

E[φ(X(h))|X(0) = x] = φ(x) + hLφ(x) +
h2

2
L2φ(x) + . . .

where L is the generator of (1.1) and is given by

Lφ = φ′f −G−1(g, f )φ′g − σ2

2
G−1 div(g)φ′(g) (1.3)

+
σ2

2
G−2(g, g′g)φ′(g) +

σ2

2
∆φ− σ2

2
G−1φ′′(g, g),

where g = ∇ζ and G = gTg. We compare with the Talay-
Tubaro expansion of the integrator

E[φ(X1)|X0 = x] = φ(x) + hA0φ(x) + h2A1φ(x) + . . .

Then the scheme has weak order p if ∀j ≤ p, Lj/j! = Aj−1.

Ergodicity property: there exists a probability density ρ∞
such that

lim
T→+∞

1

T

T∫
0

φ(X(s))ds =

∫
M

φ(y)ρ∞(y)dσM(y) a.s.

where dσM is the canonical measure onM induced by the
euclidean metric of Rd.
We call error of the invariant measure the quantity

e(φ, h) =

∣∣∣∣∣∣ lim
N→+∞

1

N + 1

N∑
n=0

φ(Xn)−
∫
M
φρ∞dσM

∣∣∣∣∣∣ .
The scheme is of order p for the invariant measure if for
every test function φ, e(φ, h)≤C(x, φ)hp.

Theorem 1. [3] (related work in Rd: [2, 1])

Under technical assumptions, if A∗jρ∞ = 0 (in L2(dσM))
for j = 1, . . . p− 1, i.e. for every test function φ,∫

M
(Ajφ)ρ∞dσM = 0, j = 1, . . . p− 1,

then the scheme has order p for the invariant measure.

2. High order Runge-Kutta methods for overdamped
Langevin in Rd

WE consider Runge-Kutta methods of the form

Yi = Xn + h
s∑
j=1

aijf (Yj) + σ
√
hdiξn,

Xn+1 = Ys.

Theorem 2. [3] (Order conditions in Rd)
A Runge-Kutta method has weak order 1 if cs = 1. In
addition, it has order 2 for the invariant measure if the
following 2 conditions are satisfied:

s∑
j=1

asjcj =

s∑
j=1

asjd
2
j = 2

s∑
j=1

asjdj −
1

2
.

Remark. We find 3 order conditions for weak order 2. There
are 11 conditions for the weak order 3 and 6 conditions for
the invariant measure.

Example.
The θ-method for solving (1.2) is

Xn+1 = Xn+h(1− θ)f (Xn) +hθf (Xn+1) +σ
√
hξn. (2.1)

It has order 2 for the invariant measure if θ = 1
2 and order

1 else.

3. High order Runge-Kutta methods for constrained
overdamped Langevin

WE consider the following class of Runge-Kutta integra-
tors

Yi = Xn + h

s∑
j=1

aijf (Yj) + σ
√
hdiξn + λi

s∑
j=1

âijg(Yj),

ζ(Yi) = 0 if δi = 1, (3.1)
Xn+1 = Ys,

where δi =
∑s
j=1 âij ∈ {0, 1} and δs = 1.

Proposition. If cs = ds = 1 and
∑
âsjdj =

∑
âsjδjdj, the

method is consistent, that is, A0 = L.
Example.
The simplest numerical scheme for approximating er-
godic integrals on manifolds is the Euler method

Xn+1 = Xn + hf (Xn) + σ
√
hξn + λg(Xn+1), (3.2)

ζ(Xn+1) = 0.

It is a Runge-Kutta method of weak order 1 with the co-
efficients given by the following Butcher tableau.

c A δ Â d =
0 0 0 0 0 0 0
1 1 0 1 0 1 1

Theorem 3. [4] (Order conditions on the manifoldM)
We consider a consistent ergodic Runge-Kutta method
of the form (3.1) applied to solve (1.2), then the integrator
has order 2 for the invariant measure if the coefficients
of the method satisfy 23 order conditions:

s∑
j=1

âsjdj =

s∑
j=1

asjdj,
s∑
j=1

asjcj = 2

s∑
j=1

asjdj −
1

2
, . . .

Remark. We find 25 Runge-Kutta order conditions for weak
order 2. These conditions are detailed in [4].

4. Exotic aromatic B-series for the computation of
order conditions

TREES have proven to be useful for the study and the
construction of high order integrators: Butcher, 1972

and Hairer, Wanner, 1974 (See also Hairer, Wanner, Lu-
bich, 2006 and [3]).
We rewrite our differentials with partitioned aromatic forests
(see Chartier, Murua, 2007 and Bogfjellmo, 2015). We de-
note F (γ)(φ) the elementary differential of a tree γ.

F ( )(φ) = φ′f

F ( )(φ) = σ2G−1 div(g)φ′g

F
( )

(φ) = σ2G−1φ′′(g, g′f )

We also introduce lianas and non-oriented edges in our
forests and call these exotic aromatic forests.

F ( )(φ) =
∑
i

φ′′(ei, ei) = ∆φ

F ( )(φ) = σ4G−2(g, g′g)
∑
i

φ′′(g′(ei), ei)

F
( )

(φ) = σ2G−1(g, f )(∆φ)′g

Example.
The operator L in (1.3) can be rewritten with exotic aro-
matic forests as

Lφ = F
(
− − 1

2
+

1

2
+

1

2
− 1

2

)
(φ).

In Rd, we have g = 0, so that the trees with white nodes
vanish and L is given by

Lφ = F
(

+
1

2

)
(φ) = φ′f +

σ2

2
∆φ.

The operator A1 can be expressed with exotic aromatic
forests.

A1φ = F
(1

2
− 1

4
+

1

2

∑
âsjdj − 1

2
+ . . .

)
(φ).

For the θ-method (2.1) in Rd, we find

A1 = F
(
θ +

1

2
+
θ

2
+ θ +

1

2
+

1

8

)
.

To compute the order conditions for the invariant measure,
we apply multiple integrations by parts to get∫

M
(Ajφ)ρ∞dσM =

∫
M

(A0
jφ)ρ∞dσM,

where A0
jφ is a differential operator of order 1 on φ.

Lemma 4. The process of integration by parts can be rewrit-
ten with exotic aromatic forests as a straightforward proce-
dure on graphs. Moreover A0

jφ can be expressed with ex-
otic aromatic forests.
For the θ-method (2.1) in Rd, we find

A0
1 =

(1
2
− θ
)
F
(

+
1

2

)
.

5. Numerical experiments

BY solving numerically the order conditions of Theorem 3,
we find a new Runge-Kutta method that has order 2 for

the invariant measure. In addition, the method is explicit in
f and uses only 3 evaluations of f per step.
To check the numerical order 2 for the invariant measure
of this integrator, we apply it on the sphere (with ζ(x) =
(x2

1 +x2
2 +x2

3−1)/2) and the torus (with ζ(x) = (x2
1 +x2

2 +x2
3 +

R2−r2)2−4R2(x2
1 +x2

2), R = 3 and r = 1) in dimension d = 3
and compare it with the Euler scheme (3.2). We plot the er-
ror for the invariant measure versus different timesteps h. In
both cases, we observe order 1 for the Euler scheme (3.2)
and order 2 for the new Runge-Kutta scheme.

Figure 1: A trajectory of the order 2 method (left) and the
convergence curve for the sphere for the invariant measure
(right) with V (x) = 25(1 − x2

1 − x
2
2), φ(x) = x2

3 and M = 107

trajectories

Figure 2: A trajectory of the order 2 method (left) and the
convergence curve for the torus for the invariant measure
(right) with V (x) = 25(x3 − r)2, φ(x) = x2

3 and M = 107

trajectories
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