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Abstract

Aromatic B-series were introduced as an extension of standard Butcher-series for the
study of volume-preserving integrators. It was proven with their help that the only volume-
preserving B-series method is the exact flow of the differential equation. The question was
raised whether there exists a volume-preserving integrator that can be expanded as an aro-
matic B-series. In this work, we introduce a new algebraic tool, called the aromatic bicom-
plex, similar to the variational bicomplex in variational calculus. We prove the exactness
of this bicomplex and use it to describe explicitly the key object in the study of volume-
preserving integrators: the aromatic forms of vanishing divergence. The analysis provides
us with a handful of new tools to study aromatic B-series, gives insights on the process
of integration by parts of trees, and allows to describe explicitly the aromatic B-series of
a volume-preserving integrator. In particular, we conclude that an aromatic Runge-Kutta
method cannot preserve volume.
Keywords: geometric numerical integration, volume-preservation, aromatic B-series, diver-
gence, aromatic bicomplex, aromatic forms, solenoidal forms, Euler operator, homotopy
operator, integration by parts, Euler-Lagrange complex.
AMS subject classification (2020): 65L06, 41A58, 58J10, 58A12, 37M15, 05C05.

1 Introduction
Let f : Rd Ñ Rd be a smooth Lipschitz vector field and let y : r0, T s Ñ Rd be the solution to the
ordinary differential equation

y1ptq � fpyptqq, t Ps0, T r, yp0q � y0. (1.1)

If the vector field f is divergence-free, that is, if divpfq � 0, it is known that the solution
of the ODE (1.1) is volume-preserving, that is, for any measurable set of initial conditions D
with respect to the Lebesgue measure λ, for any t ¡ 0, the flow φt of the ODE (1.1) satis-
fies λpφtpDqq � λpDq. Divergence-free vector fields appear in a variety of concrete dynamical
systems, for instance in fluid dynamics, meteorology or molecular dynamics. To integrate such
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systems, it is fundamental to use numerical integrators that also preserve the volume. We dis-
cretize the time interval r0, T s into N � 1 equidistant steps tn � nh, with h the time stepsize,
and we choose a one-step integrator

yn�1 � Φpyn, hq. (1.2)

For large classes of integrators, the standard methodology to study volume-preservation uses
backward error analysis (see, for instance, the textbook [23]). The integrator (1.2) can be
interpreted formally as the exact solution of a modified ODE

ry1ptq � rfpryptqq, (1.3)

where the modified vector field rf typically depends on f and its derivatives. Then, the integrator
is volume-preserving if and only if divp rfq � 0.

There is a considerable literature on volume-preserving methods, with many applications
for solving a variety of dynamical systems. The existing volume-preserving integrators rely
either on a specific form of the vector field f [23, 18], on splitting methods [33, 43, 42, 61],
or on generating functions [53, 55, 51]. For quadratic differential equations, we mention the
works [49, 16, 15, 14, 7] that study the Kahan-Hirota-Kimura discretization [32, 28, 29] for the
preservation of measures. The splitting approach relies on the knowledge of the exact flows
involved or depends on the dimension of the problem, and is limited to order two in the case
of non-reversible problems [5]. The methodology with generating functions works with any
vector field, but its complexity increases with the dimension of the problem and the approach
requires the evaluation of multiple integrals per step. An important open question in geometric
numerical integration is the creation of a volume-preserving method for solving a general ODE
of the form (1.1) with a complexity independent of the dimension of the problem. We investigate
in this work the volume-preserving aromatic B-series method.

Introduced in [10, 24] (see also the textbooks [23, 11, 12] and the review [41]), the Butcher-
series formalism is an important tool in numerical analysis. Originally used for the calculation of
order conditions for Runge-Kutta methods, the use of B-series was quickly extended to a variety
of applications, in particular in geometric numerical integration [23], and more recently in the
approximation of stochastic evolutionary problems [9, 34, 52, 19, 36] or in the theory of rough
paths [22, 25]. For a large class of integrators, such as Runge-Kutta methods, the modified
vector field rf in (1.3) is a B-series in f . An extension of B-series, called aromatic B-series, was
introduced in [18, 31] for the study of volume-preserving integrators. They allow to compute
the divergence of a B-series, and were later studied in [40, 45, 6, 21] for their algebraic and
geometric properties. In [18, 31], it is showed that no non-trivial B-series is divergence-free, so
that the only volume-preserving B-series method is the exact flow. In particular, no Runge-
Kutta method can preserve volume exactly (see also [33]). However, the space of divergence-free
aromatic B-series is infinite-dimensional, the simplest non-trivial example being:

ḑ

i,j,k�1
pf j

kfk
j f i � f j

jkfkf i � f j
j f i

kfk � f i
jkf jfkqBi P Kerpdivq. (1.4)

In [45], the question whether there exists a volume-preserving integrator that has an expansion
as an aromatic B-series is raised. The present article gives a handful of tools to answer this
question and describes explicitly the aromatic B-series of a volume-preserving integrator. In
particular, we prove that no aromatic Runge-Kutta method can preserve-volume exactly.
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When using B-series, the study of volume-preservation translates into the study of the linear
combinations of aromatic forests of vanishing divergence, that we call solenoidal forms. To the
best of our knowledge, there does not exist any tool in the literature to describe these forests.
In differential geometry, the study of differential forms of vanishing divergence is done with the
De Rham complex [38]. For instance, in dimension 3, denote Ω(diff)

n pR3q the space of smooth
differential n-forms on R3, then the De Rham complex writes

Ω(diff)
0 pR3q Ω(diff)

1 pR3q Ω(diff)
2 pR3q Ω(diff)

3 pR3q,d d d (1.5)

where d is the exterior derivative. In this particular example, the arrows correspond in order to
the gradient, the curl, and the divergence operators. The chain (1.5) is called a complex as the
composition of two successive maps vanishes. Moreover, the De Rham complex (1.5) is exact;
that is, the image of a map is exactly the kernel of its successor. For instance, a divergence-free
form ω P Ω3pR3q is a curl ω � dη. This exactness property is typically proven via the use
of homotopy operators. The analysis presented in this paper relies heavily on a generalisation
of the De Rham complex, called the variational bicomplex, that we extend in the context of
aromatic forests.

The variational bicomplex was originally introduced in the context of differential geome-
try [58, 57, 56, 59, 60] as a natural and general development of the variational chain. It has
a variety of applications in the areas of differential geometry and topology, differential equa-
tions, mathematical physics and PDEs (see, for instance, the textbooks [1, 47], the introductory
article [2], and references therein). In this work, we introduce an algebraic tool on aromatic
forests, that we call the aromatic bicomplex, in the spirit of the variational bicomplex. If one
considers the elementary differentials associated to the aromatic forests in the bicomplex, it
yields a subcomplex of the standard variational bicomplex. An originality of the approach is
that the analysis of the aromatic bicomplex uses simple combinatorics and graph theory and
avoids the technical details of differential geometry. We emphasize that, unlike the analysis of
the variational bicomplex, the analysis of the aromatic bicomplex is completely independent of
the dimension of the problem. We will also add the extra assumption divpfq � 0, whose effect
has never been studied, to the best of our knowledge, in the context of the variational bicomplex.
Thanks to the exactness of the aromatic bicomplex, we describe completely the solenoidal forms,
both in the standard context and under the assumption divpfq � 0. We provide new operations
on aromatic forests, such as the Euler operators and homotopy operators, and we draw links
with the process of integration by parts of trees described in [36, 37]. The main application of
this work is the explicit description of the aromatic B-series of a volume-preserving integrator.
In particular, we show that no aromatic Runge-Kutta method can preserve volume, and we
propose a possible new ansatz for the creation of volume-preserving aromatic B-series methods.

The paper is organised as follows. Section 2 introduces the aromatic forests and forms,
the aromatic bicomplex, and presents the main theoretical results of this paper. In Section 3,
we introduce the Euler operators and study the exactness of the aromatic bicomplex, in the
standard context and in the case of a divergence-free vector field. In Section 4, we present
different extensions and applications of the aromatic bicomplex. More precisely, we introduce
the augmented aromatic bicomplex and the Euler-Lagrange complex, we compute exactly the
number of solenoidal forms, we derive bases and properties on divergences and solenoidal forms,
and we draw links with the different integration by parts process of trees existing in the literature.
Finally, we apply our results to the study of volume-preserving integrators to obtain an explicit
description of the B-series of an aromatic volume-preserving integrator.
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2 Preliminaries and main results
This section is devoted to the presentation of the new objects and to the associated main
algebraic results. We first recall the definition of aromatic forests, and present an extension,
called aromatic forms, well-suited for studying the divergence-free combination of forests. Using
grafting operations, we define the aromatic bicomplex, a similar tool to the variational bicomplex
in the context of differential geometry, and we use its exactness to describe aromatic forms of
vanishing divergence. The proofs of the results of this section, as well as further tools, such
as the Euler operators, are presented in Section 3, while we give more details and concrete
applications in Section 4.

2.1 Aromatic forms: definition and operations

B-series were introduced by Hairer and Wanner in [24], based on the work of Butcher [10]. Their
applications in the numerical analysis of deterministic differential equations are numerous (see,
for instance, the textbooks [12, 23]). The aromatic extension of Butcher-series was introduced
independently in the works [18, 31] to study volume-preserving integrators. In particular, this
extension allows us to represent the divergence of standard B-series, which is a key tool in the
study of volume-preserving methods (see [23, Sect. VI.9]). In the spirit of differential geometry,
we work in this paper with an extension of aromatic B-series that is analogous to differential
forms, and we follow the graph definition of aromatic B-series of [6].
Definition 2.1. Let V be a finite set of nodes, and E � V �V a set of edges. If a � pv, wq P E,
the edge a is going from v to w, and v is a predecessor of w. We split the set V into vertices V 

and covertices V �. The covertices are numbered from 1 to p, while the vertices are not numbered.
Each node in V is the target of at most one node. The nodes that are not the target of any node
are called roots. The roots are numbered from 1 to n. Any connected component of such a
graph either has a root, and is called a tree, or does not have a root, and is called an aroma.
We call aromatic forests such graphs, up to equivalence of graphs that preserve the numbering
of the covertices and the roots. We write Fn,p the set of aromatic forests with n roots and p
covertices, FN

n,p its subset with forests of exactly N nodes, and Fn � Fn,0. The number of
nodes |γ| is called the order of the forest γ. The elements of F1 are called aromatic trees, and
the subset T of F1 that contains the trees without aromas is the set of Butcher trees.

We draw the aromatic forests as follows. The vertices are represented as black nodes, and
the covertices as circles of the form i , where i is the associated number. The trees are drawn in
the ascending order of their roots, from left to right. The aromas are placed in front and their
order does not matter. The orientation of the edges goes from top to bottom and in clockwise
order for loops. A loop with K nodes is called a K-loop, in the spirit of [31]. For instance, the
following forest γ P F10

3,2 has two aromas, one 1-loop and one 3-loop,

γ �
2

1 . (2.1)

The aromatic forests with N � 2 nodes are

F2
2 � t u, F2

1 � t , u, F2
0 � t , , u,

F2
2,1 � t 1 , 1 u, F2

1,1 � t
1

, 1 , 1 ,
1

u, F2
0,1 � t

1
,

1

,
1

,
1
u,

F2
2,2 � t 1 2 , 2 1 u, F2

1,2 � t 1

2

, 2

1

,
1

2 ,
2

1 u, F2
0,2 � t

1

2
,

2

1
, 1

2

,
1 2

u.
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An aromatic forest in Fn,p represents a tensor on the infinite jet bundle through the appli-
cation of the elementary differential map. The definition of this map relies on contact forms on
the infinite jet bundle, of which we give a brief definition below. These details can be ignored
as we shall work in the following with aromatic forests only, but they draw the link with the
variational bicomplex (see Remark 2.8). We refer the reader to [2] for further details (see also the
textbooks [47, 35, 38]). The infinite jet bundle J8pRdq is used to describe coordinate-free Taylor
expansions. It is the infinite-dimensional vector bundle over Rd where elements of J8x pRdq have
coordinates

pf ipxq, f i
jpxq, f i

jkpxq, . . . q, f i : Rd Ñ R, f i
j1,...,jm

�
Bf i

Bxj1 . . . Bxjm
. (2.2)

We consider differential forms on J8pRdq and define the following contact forms

θi
j1,...,jp

� df i
j1,...,jp

� f i
j1,...,jp,kdxk.

The set tdxi, θi, θi
j , . . . u locally generates all differential forms on J8pRdq. A differential form of

type pn, pq is a sum of terms of the form

gpfqdxi1 ^ � � � ^ dxin ^ θj1
I1
^ � � � ^ θ

jp

Ip
,

where gpfq is a functional of finitely many coordinates (2.2). The differential forms of type pn, pq

are gathered in the set Ω(diff)
n,p pJ8pRdqq. In agreement with the numerical analysis literature, the

elementary differential map is defined with the help of the vector basis Bi.

Definition 2.2. Let γ P Fn,p, f : Rd Ñ Rd a smooth vector field, and R � tr1, . . . , rnu � V
the n roots of γ, then the elementary differential F pγqpfq is the following tensor:

F pγqpfq �
¸

iwPt1,...,du
wPV zR

¹
vPV 

f iv
IΠpvq

Bir1
b � � � b Birn

b θ
i 1
IΠp 1 q

b � � � b θ
i p

IΠp p q
,

where Πpvq is the set of predecessors of v P V . We extend F on SpanpFn,pq by linearity.

For instance, we find

F p qpfq � divpfq �
ḑ

i�1
f i

i , F p qpfq �
ḑ

i,j�1
f i

jf jBi, F p 1 qpfq �
ḑ

i�1
Bi b θi.

The forest γ in (2.1) represents the elementary differential

F pγqpfq �
� ḑ

j,k,l�1
fk

j f l
kf j

l

	� ḑ

j,k�1
f j

jkfk
	 ḑ

ir1 ,ir2 ,ir3 ,j,k�1
f

ir1
j fkf ir2Bir1

b Bir2
b Bir3

b θir3 b θj
k.

In the following, we work with specific linear combinations of aromatic forests in SpanpFn,pq.
Given an elementary tensor, one can alternatize it to obtain a differential form. The same idea
gives rise to the aromatic forms.

Definition 2.3. For γ P Fn,p, let S
n (resp. S�

p) be the set of permutations of the roots of γ
(resp. the covertices of γ). We define the roots wedge of γ as

^γ �
1
n!

¸
σPS

n

εpσqσγ,
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where εpσq is the signature of the permutation σ. Similarly, the covertices wedge is

^�γ �
1
p!
¸

σPS�
p

εpσqσγ,

and the total wedge is ^ � ^^� � ^�^.

We extend the wedge operations to SpanpFn,pq by linearity and we denote the set of aromatic
forms Ωn,p � ^ SpanpFn,pq, respectively ΩN

n,p � ^ SpanpFN
n,pq, and Ωn � Ωn,0. As ^2 � ^, the

operator ^ : SpanpFn,pq Ñ Ωn,p is a projection on Ωn,p.

Example. Let γ � P F2, then

^γ �
1
2p � q P Ω2.

For γ given by (2.1), the associated aromatic form is

^γ �
1
12

�
2

1 � 1
2

� 1
2
�

2
1

�
2

1 � 1
2
�

1
2 � 2

1

� 2
1
�

1
2 �

1
2 � 2

1
	

.

We now define the grafting and replacing operations on aromatic forests.

Definition 2.4. Let γ P Fn,p be a forest, r a root of γ, and u P V (possibly equal to r),
then DrÑuγ returns a copy of γ where the node r is now a predecessor of u. We define the
operator Drγ �

°
uPV DrÑuγ. Let γ P Fn,p and v P V , we define γvÑ k as the forest obtained

by replacing the node v by a new covertex k . Similarly, γ k Ñ is the forest obtained by replacing
the covertex k by a vertex.

Example. Let γ �
1 and r its root, then

Drγ �
1

�
1

, γrÑ 2 � 2

1

, γ 1 Ñ � .

The horizontal derivative is defined using grafting operations, while the vertical derivative
uses the replacing operation.

Definition 2.5. Let γ P Fn,p, the horizontal and vertical derivatives are

dHγ � Drnγ, dV γ � ^
¸

vPV 

γvÑ p�1 .

We extend dH and dV on Ωn,p by linearity into dH : Ωn,p Ñ Ωn�1,p and dV : Ωn,p Ñ Ωn,p�1.
The aromatic forms in KerpdHq are called solenoidal forms, Ψ � KerpdH |Ω1q are the solenoidal
combinations of trees, and ΨN � KerpdH |ΩN

1
q are the solenoidal combinations of trees of order N .

The operator dH : Ω1 Ñ Ω0 is often called the divergence of an aromatic tree, as for γ P
Ω1, dH satisfies divpgq � F pdHpγqqpfq, where F pγqpfq �

°
i giBi. The operator dH : Ω1 Ñ Ω0 is

often called the divergence of an aromatic tree.
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Example. Consider γ1 � P Ω1, γ2 � ^ P Ω2, and γ3 � ^ 1 P Ω2,1, then

dHγ1 � , dHγ2 �
1
2

�
� � �

	
, dHγ3 �

1
2

�
1

�
1
� 1 � 1

	
,

dV γ1 � 1 , dV γ2 � ^ 1 �^
1
�^ 1 , dV γ3 � ^ 2 1 �

1
2p

2 1 � 1 2 q.

A calculation yields d2
Hγ2 � 0, so that dHγ2 P Ψ is a solenoidal form.

The following result, proven in Subsection 3.2, allows us to define the bicomplex.

Proposition 2.6. The horizontal and vertical derivatives satisfy

d2
H � 0, d2

V � 0, dV dH � dHdV .

Remark 2.7. The horizontal and vertical derivatives were already defined on the set of aromatic
trees Ω1 � SpanpF1q respectively in [18, 31] for dH and in [21] for dV . In this last work, the
trace operator Tr: Ω1,1 Ñ Ω0 on aromatic trees is studied. For γ P Ω1,1, it is given with our
notations by

Tr γ � pDrÑ 1 γq 1 Ñ,

and it makes the following diagram commute.

Ω1,1

Ω1 Ω0

Tr

dH

dV

2.2 The aromatic bicomplex: exactness and description of solenoidal forms

The variational bicomplex is a powerful tool of variational calculus [2]. We introduce in the
context of aromatic forms a tool in the spirit of the variational bicomplex. This new complex,
that we call the aromatic bicomplex, allows us in particular to describe explicitly the solenoidal
forms in the standard context and in the divergence-free case.

The aromatic bicomplex is the diagram drawn in Figure 1. We also introduce its variant
with forms of fixed order N . The aromatic bicomplex can be completed by an extra column
on the right in order, for instance, to describe the aromatic forms in ImpdH |Ω1,pq, as we will
see in Subsection 4.1. We refer the reader to the appendix B for examples of the (augmented)
aromatic bicomplex for the first values of N .

Remark 2.8. For a fixed dimension d, the elementary differential map F (Definition 2.2) makes
a link between the aromatic bicomplex and a subcomplex of the variational bicomplex [2] in the
following way. Let σ be the standard duality map between the type n-alternating contravariant
tensors and the type pd�nq-differential forms with respect to the standard Euclidean coordinates
and volume form dx1^. . . dxd (see, for instance, [38]). Let f : Rd Ñ Rd, the map σF p.qpfq sends
an aromatic form in Ωn,p to a differential form in Ω(diff)

d�n,ppJ
8pRdqq. The derivatives dH , dV on

the aromatic bicomplex and d
(diff)
H , d

(diff)
V on the variational bicomplex satisfy

d
(diff)
H σF pγqpfq � σF pdHγqpfq, d

(diff)
V F pγqpfq � p�1qn�pF pdV γqpfq.
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...
...

...

. . . Ω2,2 Ω1,2 Ω0,2

. . . Ω2,1 Ω1,1 Ω0,1

. . . Ω2 Ω1 Ω0

0 0 0

dH dH

dV

dH

dV dV

dH dH

dV

dH

dV dV

dH dH

dV

dH

dV dV

0 0

0 ΩN
N,N . . . ΩN

0,N

...
...

0 ΩN
N . . . ΩN

0

0 0

dH dH

dV dV

dH

dV

dH

dV

Figure 1: The aromatic bicomplex (left) and its subcomplex of order N (right).

Note that the dimension d of the problem plays a role in the context of differential geometry,
but not in the context of aromatic forms. The exactness results presented in this paper translate
directly to new results on a subcomplex of the variational bicomplex through the application of
σF p.qpfq. Note also that dH and dV commute (see Proposition 2.6), while their counterparts
from differential geometry anticommute.

The main property of the aromatic bicomplex is its exactness.

Theorem 2.9. The horizontal and vertical sequences of the aromatic bicomplex are exact, that
is, for all n, p ¥ 0,

ImpdH |ΩN
n�1,p

q � KerpdH |ΩN
n,p
q, ImpdV |ΩN

n,p
q � KerpdV |ΩN

n,p�1
q.

With Theorem 2.9, it is straightforward to generate all the solenoidal aromatic forms by
considering the dH ^γ for γ P F2. For example, the only basis element of Ψ3 (which corresponds
to the vector field (1.4)) is

2dH ^ � � � � , (2.3)

and a basis of Ψ4 is given by the forests

2dH ^ � � � � � � ,

2dH ^ � � 2 � � 2 � � ,

2dH ^ � � � � � � .

However, the set tdH ^ γ, γ P F2u does not form a basis of the solenoidal forms in general. We
give a basis of Ψ in Subsection 4.3 alongside bases of the image and kernel of dH and its dual d�H .

For the study of volume-preserving integrators for solving (1.1), it is fundamental to assume
that the vector field f satisfies divpfq � 0. With aromatic forms, it amounts to sending all forests
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containing an aroma with a 1-loop to 0. We consider the vector space A spanned by aromatic
forests containing at least one 1-loop, An,p � A X Ωn,p, and AN

n,p � A X ΩN
n,p. We write rFn,p

the set of aromatic forests in Fn,p without 1-loops, rΩn,p � Ωn,p{An,p, rΩN
n,p � ΩN

n,p{AN
n,p, rΩn �rΩn,0, rΨ � KerpdH |rΩ1

q, and rΨN � KerpdH |rΩN
1
q. The divergence-free aromatic bicomplex with N

nodes is drawn in Figure 2. In the simplest case N � 1 (see Figure 2), the aromatic bicomplex

...
...

...

. . . rΩN
2,2

rΩN
1,2

rΩN
0,2

. . . rΩN
2,1

rΩN
1,1

rΩN
0,1

. . . rΩN
2

rΩN
1

rΩN
0

0 0 0

dH dH

dV

dH

dV dV

dH dH

dV

dH

dV dV

dH dH

dV

dH

dV dV

0 0

0 rΩ1
1,1 � Spanp 1 q rΩ1

0,1 � 0

0 rΩ1
1 � Spanp q rΩ1

0 � 0

0 0

dH

dH

dV dV

Figure 2: The divergence-free aromatic bicomplex of order N (left) and of order N � 1 (right).

is not exact. Indeed, we have P KerpdHq, but R ImpdHq. One of the main results of this
paper is that the case N � 1 is the only case where the divergence-free aromatic bicomplex is
not exact.
Theorem 2.10. The divergence-free aromatic bicomplex with N nodes is exact if and only
if N � 1.

The main consequence of the exactness of the aromatic bicomplex in both contexts is that
the assumption divpfq � 0 does not create new non-trivial solenoidal forms.
Theorem 2.11. For N � 1, and all n ¥ 1, p ¥ 0, the kernel of the divergence operator dH

satisfies
KerpdH |rΩN

n,p
q � KerpdH |ΩN

n,p
q{AN

n,p,

that is, the solenoidal aromatic forms in the divergence-free context exactly correspond to the
solenoidal aromatic forms in the standard context, except for the forms spanned by and 1 .

Proof of Theorem 2.11. As dH does not decrease the number of 1-loops in a forest, the image
of dH satisfies

ImpdH |rΩN
n�1,p

q � ImpdH |ΩN
n�1,p

q{AN
n,p.

Theorem 2.9 and Theorem 2.10 yield the desired identity.

A generating set of the solenoidal forms rΨN of order N ¡ 1 is obtained by deleting the 1-
loops in the generating set tdH ^ γ, γ P FN

2 u of ΨN . For instance, for order N � 3, we derive
from the element (2.3) that the solenoidal forms in the divergence-free context are given byrΨ3 � Spanp � q.
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We give generators of the solenoidal forms rΨN for the first orders in Appendix A. This explicit
description of solenoidal forms is especially useful in the numerical study of volume-preserving
integrators, as discussed in Subsection 4.5.

We enumerate in Subsection 4.2 the dimensions of the ΩN
n,p and rΩN

n,p in the first two rows of
the bicomplex and deduce the dimension of ΨN in Theorem 4.2 and of rΨN in Theorem 4.4. A
surprising fundamental result is that the solenoidal forms in ΨN are enumerated by the difference
between the number of aromatic trees in ΩN

1 and the number of aromas with 1-loops Ω̊N
0 (see

Table 1 for examples).

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14
|ΩN

1 | 1 2 6 16 45 121 338 929 2598 7261 20453 57738 163799 465778

|Ω̊N
0 | 1 2 5 13 34 90 243 660 1818 5045 14102 39639 111982 317533

|ΨN | 0 0 1 3 11 31 95 269 780 2216 6351 18099 51817 148245

|rΨN | 1 0 1 2 7 16 48 123 346 937 2626 7284 20533 57804

Table 1: Dimensions of the space of solenoidal forms in both contexts for the first orders N (see Theo-
rems 4.2 and 4.4). Note how |ΨN | � |ΩN

1 | � |Ω̊N
0 |.

3 The aromatic bicomplex
This section is devoted to the study of the aromatic bicomplex. First, we introduce the Euler
operators and prove the exactness of the variational chain in Subsection 3.1. We define the
horizontal and vertical homotopy operators and prove the exactness of the aromatic bicomplex
in Subsection 3.2. We study the aromatic bicomplex in the divergence-free context in Subsec-
tion 3.3.

3.1 The Euler operators and the variational complex

To define the Euler operators, we extend Definition 2.4 to allow one to detach edges and graft
them back.

Definition 3.1. A graph γ is a marked aromatic forest if it is an aromatic forest with exactly
one of its node that holds the symbol �. We write F�

n,p the set of marked aromatic forests with n
roots and p covertices. Given γ P F�

n,p, γ� P Fn,p is the same forest γ where the symbol � is
removed.

Let γ P Fn,p or γ P F�
n,p, where v� P V is the node with the symbol �. Let R0 � R be a

given subset of roots that we call the set of detached nodes. For γ P F�
n,p, r P R and u P V

with u � v�, DrÑuγ P F�
n�1,p is the marked aromatic forest obtained by adding the edge linking r

to u to γ. The set of detached roots of DrÑuγ is R0 if r R R0 and R0ztru else. We define

Drγ �
¸

uPV ztv�u

DrÑuγ.

Let q be a non-negative integer, u P V with u � v� if γ P F�
n,p, and I � R0. We define DI

and DIÑu by
DIγ �

¸
φ : IÑV

¹
wPI

DwÑφpwqγ, DIÑuγ �
¹
wPI

DwÑuγ,
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and Dq and DqÑu by

Dqγ �
¸

I�R0,|I|�q

DIγ, DqÑuγ �
¸

I�R0,|I|�q

DIÑuγ.

Let γ P Fn,p and v P V , then γv� P Fn�|Πpvq|,p is the graph obtained by cutting off the edges
of γ pointing to v and placing the newly obtained roots after the roots in R (in an arbitrary
order). In addition, we add a symbol � on the node v and we fix R0 � Πpvq as the set of
detached nodes.

The tools from Definition 3.1 are extended by linearity. In simple words, the � detaches the
predecessors of a given node v� and put them in a set R0. As long as the symbol � is present, the
grafting operators DI and Dq graft the detached nodes on every node except v�. In particular,
the following operation is trivial:

D|Πpvq|Ñvpγv�q
� � γ.

Example. Consider the forest γ �
1

2 that we label for the sake of clarity. The marked
forest γ1� has the set of detached nodes R0 � t1u and satisfies

γ1� �
2 1 , pDγ1�q

� � 2

1

, Dpγ1�q
� � 2

1

�
1

2 .

For simplicity, we write γvÑ k � for pγvÑ k q k � , and D � D1 in the rest of the paper. Note
that, in general, D2 and D � D are different operators. Instead, straightforward combinatorics
yield �

n

p



Dn � DpDn�p. (3.1)

However, for u, v P R, the operations Du and Dv commute.

Remark 3.2. The notations introduced in Definition 3.1 closely depend on the forest γ they
are applied to. For the sake of clarity, in the rest of the paper, the notations shall always relate
to the original forest denoted γ. For instance, in p�1q|Πpvq|γv�, Πpvq denotes the number of
predecessors of v in γ, not in γv�.

In the context of differential geometry, the Euler operator describes the differential forms
that are divergences [47]. It has a variety of applications such as the study of conservation laws
and Lagrangians for PDEs [48, 54, 26, 27, 50]. We define a similar operator for aromatic forms.

Definition 3.3. For γ P Fn,p and v P V , the Euler operators Ev : Fn,p Ñ Ωn,p and E�v : F0 Ñ Ω0,1
are given by

Evγ � p�1q|Πpvq|pDΠpvqγv�q
�, E�v γ � p�1q|Πpvq|pDΠpvqγvÑ 1 �q

�

and are extended by linearity on Ωn,p. The Euler operator E : Ωn,p Ñ Ωn,p and its vari-
ant E� : Ω0 Ñ Ω0,1 are given by

Eγ �
¸
vPV

Evγ, E�γ �
¸
vPV

E�v γ.

11



The output of E� on the forms of first orders is

E� � 0, E� � 2
1

, E� � �2
1

, E� � �2
1

.

From these examples, we observe that the Euler operator vanishes on aromatic forms that are
divergences:

E�dH � 0, E�dH � 0, E�dH � 0.

Proposition 3.4. Let γ P Fn,p and v P V , the Euler operators satisfy

EvdHγ � 0, EdHγ � 0

and for p � 0, E� satisfies E�dHγ � 0.

Proof. Let γ P Fn,p and rn be its last root, then

EvdHγ �
¸
uPV

EvDrnÑuγ

� p�1q|Πpvq|�1pDΠpvqDrnγv�q
� �

¸
u�v

p�1q|Πpvq|pDΠpvqDrnÑuγv�q
� � 0,

where the two terms correspond to the cases u � v and u � v, and where we used the convention
of Remark 3.2. The identities with E and E� are direct consequences.

We know that the composition of the two maps E� and dH vanishes. One is then interested
in a necessary and sufficient condition for an aromatic form γ P Ω0 to be a divergence. The
following chain is called the variational complex.

Ω1 Ω0 Ω0,1
dH E� (3.2)

The complex (3.2) is exact if ImpdHq � KerpE�q; that is, if γ P Ω0 is a divergence if and only
if E�γ � 0. A fundamental question in variational calculus [47] is the exactness of this chain
(in the context of differential forms). We prove in the rest of this subsection the exactness of
the variational complex (3.2) in the context of aromatic forms. We rely on the use of the Euler
operators of higher orders and homotopy operators. To the best of our knowledge, the use of
such operators on aromatic forests is completely new.

Definition 3.5. For γ P Fn,p, the Euler operator Eq
v γ of order q ¥ 0 on v P V is

Eq
v γ � p�1q|Πpvq|�qpD|Πpvq|�qγv�q

�,

that we extend on Ωn,p by linearity. The higher Euler operators are

Eqγ �
¸
vPV

Eq
v γ.

A fundamental result for our analysis is that any aromatic forest can be rewritten with the
Euler operators. Note that all appearing series are finite, as Eq

v γ � 0 if q ¡ |γ|. Note also
that E0

v � Ev.
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Proposition 3.6. The Euler operators satisfy for all γ P Fn,p and all vertices v P V ,

γ �
8̧

q�0
DqEq

v γ. (3.3)

In particular, we have

|γ| γ �
8̧

q�0
DqEqγ. (3.4)

In addition, if γ satisfies Epγ � 0 for p � 0, . . . , n� 1, then γ � Dnphpnqγq, where

hpnqγ �
1
|γ|

8̧

p�n

�
p

n


�1
Dp�nEpγ.

The proof shares similarities with the approach of [27] and uses the following intermediate
result in the spirit of the Leibniz rule.

Lemma 3.7. Let γ P Fn,p and v P V , let three integers p, q, k such that p� q� k � |Πpvq| � 1.
Then, the following holds:

pq � 1qDq�1DkÑvpDpγv�q
� � pk � 1qDqDk�1ÑvpDpγv�q

� � pp� 1qDqDkÑvpDp�1γv�q
�.

More precisely, we have

DqDkÑvpDpγv�q
� �

ķ

n�0
p�1qk�n

�
q � n

q


�
p� k � n

p



Dq�npDp�k�nγv�q

�. (3.5)

Proof of Proposition 3.6. Let γ P Fn,p. With the help of Lemma 3.7, we get

Evγ � p�1q|Πpvq|pD|Πpvq|γv�q
�

� pγv�q
�1|Πpvq|�0 � p�1q|Πpvq|�1pD|Πpvq|γv�q

�1|Πpvq|¥1

� γ1|Πpvq|�0 �
p�1q|Πpvq|�1

|Πpvq| DpD|Πpvq|�1γv�q
� �

p�1q|Πpvq|�1

|Πpvq| D1ÑvpD|Πpvq|�1γv�q
�

We apply the same reasoning to the last term

p�1q|Πpvq|�1

|Πpvq| D1ÑvpD|Πpvq|�1γv�q
� � γ1|Πpvq|�1 �

p�1q|Πpvq|�2

|Πpvq| p|Πpvq| � 1qDD1ÑvpD|Πpvq|�2γv�q
�

�
2p�1q|Πpvq|�2

|Πpvq| p|Πpvq| � 1qD
2ÑvpD|Πpvq|�2γv�q

�.

Iterating this reasoning, we find

Evγ � γ �
8̧

p�1

p�1q|Πpvq|�p

p
�
|Πpvq|

p

� DDp�1ÑvpD|Πpvq|�pγv�q
�. (3.6)

Using the formula (3.5) in (3.6), standard combinatorics [44] yield

γ � Evγ �
8̧

p�1

p�1q|Πpvq|�p

p
�
|Πpvq|

p

� p�1̧

n�0
p�1qp�n�1pn� 1q

�
|Πpvq| � n� 1
|Πpvq| � p



Dn�1pD|Πpvq|�n�1γv�q

�
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� Evγ �
8̧

n�0

8̧

p�n�1

n� 1
p
�
|Πpvq|

p

��|Πpvq| � n� 1
|Πpvq| � p



Dn�1En�1

v γ

� Evγ �

|Πpvq|¸
n�1

|Πpvq|¸
p�n

np|Πpvq| � nq!pp� 1q!
|Πpvq|!pp� nq! DnEn

v γ

� Evγ �

|Πpvq|¸
n�1

�
|Πpvq|

n


�1 |Πpvq|�n¸
p�0

�
p� n� 1

p



DnEn

v γ �
8̧

n�0
DnEn

v γ.

We sum (3.3) on all the nodes v P V to obtain (3.4). The last claim of Proposition 3.6 is obtained
by using the formula (3.1) in (3.4).

Proof of Lemma 3.7. Using the identity (3.1), we distribute the derivatives on v and the other
nodes.

Dq�1DkÑvpDpγv�q
� �

1
q � 1DDqDkÑvpDpγv�q

�

�
1

q � 1
¸

S1\S2\S3\tuu�Πpvq
|S1|�q,|S2|�k,|S3|�p

DuDS1DS2ÑvpDS3γv�q
�

�
1

q � 1
¸

S1\S2\S3\tuu�Πpvq
|S1|�q,|S2|�k,|S3|�p

DS1

�
DS2YuÑvpDS3γv�q

� �DS2ÑvpDS3Yuγv�q
�

�

�
k � 1
q � 1

¸
S1\S2\S3�Πpvq

|S1|�q,|S2|�k�1,|S3|�p

DS1DS2ÑvpDS3γv�q
�

�
p� 1
q � 1

¸
S1\S2\S3�Πpvq

|S1|�q,|S2|�k,|S3|�p�1

DS1DS2ÑvpDS3γv�q
�

�
k � 1
q � 1 DqDk�1ÑvpDpγv�q

� �
p� 1
q � 1DqDkÑvpDp�1γv�q

�.

We obtain the formula (3.5) by induction on k.

A direct consequence of Proposition 3.6 is the exactness of the variational complex (3.2).

Theorem 3.8. For γ P F0,1, let the variational homotopy operator hV be

hV γ �
1
|γ|

γ 1 Ñ,

and for γ P F0, let the horizontal homotopy operator hH be

hHγ �
1
|γ|

8̧

q�1

1
q

Dq�1Eqγ.

We extend the definition on Ω0,1 and Ω0 by linearity. These operators satisfy for all γ P Ω0,

pdHhH � hV E�qγ � γ. (3.7)

In particular, the variational complex (3.2) is exact.
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Proof. Let γ P Ω0. From Proposition 3.6, we obtain

γ �
1
|γ|

8̧

q�0
DqEqγ �

1
|γ|

Eγ �
1
|γ|

8̧

q�1

1
q

DDq�1Eqγ � hV E�γ � dHhHγ.

Proposition 3.4 yields that ImpdHq � KerpEq. If γ P KerpEq, then the identity (3.7) becomes γ �
dHphHγq P ImpdHq. The exactness of the chain follows straightforwardly.

We present an alternative horizontal homotopy operator on Ω0 in Subsection 4.4, with some
examples of the outputs of both operators in Table 3.

3.2 Exactness of the aromatic bicomplex

This section is devoted to the proof of Theorem 2.9. We start by showing the aromatic bicomplex
is indeed a bicomplex.

Proof of Proposition 2.6. Let γ P Fn,p, and pr1, . . . , rnq its roots. The horizontal derivative
satisfies

d2
H ^ γ �

1
n! ^

�
¸

σPS
n

εpσqDrn�1Drnσγ

�
1
n! ^

�
¸

σPS
n

εppnpn� 1qqσqDrn�1Drnpnpn� 1qqσγ

� �
1
n! ^

�
¸

σPS
n

εpσqDrnDrn�1σγ

� �d2
H ^ γ,

where pnpn� 1qq P S
n is a transposition and where we used that Drn�1 and Drn commute. For

the vertical derivative, a similar approach on γ P Fn,p�1 gives

d2
V ^ γ �

¸
v,wPV 

v�w

^p^γvÑ p qwÑ p�1

�
1

p!pp� 1q! ^


¸
v,wPV 

v�w

¸
σPS�

p

¸
rσPS�

p�1

εprσσqrσpσpγvÑ p qwÑ p�1 q

�
1

p!pp� 1q! ^


¸
v,wPV 

v�w

¸
σPS�

p

¸
rσPS�

p�1

εprσσqrσσpγvÑ p ,wÑ p�1 q

�
1

p!pp� 1q! ^


¸
v,wPV 

v�w

¸
σPS�

p

¸
rσPS�

p�1

εprσσp p p� 1 qqrσσpγvÑ p�1 ,wÑ p q

� �
1

p!pp� 1q! ^


¸
v,wPV 

v�w

¸
σPS�

p

¸
rσPS�

p�1

εprσσqrσpσpγwÑ p qvÑ p�1 q

� �d2
V ^ γ.

As Ωn,p � ^pFn,pq, we get the desired identities. The commutativity of dH and dV is straight-
forward.
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In order to prove the exactness of the sequences appearing in the variational bicomplex,
we rely on the use of two homotopy operators. We begin by the vertical homotopy as it is
the easiest. Note that the variational homotopy operator and the vertical homotopy operator
introduced in Theorem 3.8 coincide for p � 1.

Proposition 3.9. The vertical homotopy operator hV : Ωn,p Ñ Ωn,p�1 given by

hV γ �
p

|γ|
γ p Ñ,

satisfies for p ¥ 1 and γ P Ωn,p,
pdV hV � hV dV qγ � γ.

Proof. Let γ P Fn,p. On the first hand, we have

dV hV γ �
p

|γ|
^ γ �

p

|γ|

¸
vPV 

^γ p Ñ,vÑ p

�
p

|γ|
^ γ �

1
|γ| pp� 1q! ^


¸

vPV 

¸
σPS�

p

εpσqσpγ p Ñ,vÑ p q.

On the other hand, we have

hV dV γ �
1
|γ|

¸
vPV 

hV p^γvÑ p�1 q

�
p� 1

|γ| pp� 1q! ^

¸

vPV 

¸
σPS�

p�1

εpσqσpγvÑ p�1 q p�1 Ñ

�
1

|γ| p! ^

¸

vPV 

¸
σPS�

p�1
σp p�1 q� p�1

εpσqσpγvÑ p�1 q p�1 Ñ

�
1

|γ| p! ^

¸

vPV 

¸
σPS�

p�1
σp p�1 q� p�1

εpσqσpγvÑ p�1 q p�1 Ñ

�
1

|γ| p! ^

¸

vPV 

¸
σPS�

p

εpσqσγ

�
1

|γ| p! ^


p̧

i�1

¸
vPV 

¸
σPS�

p

σp i q� p

εpσqσpγ i Ñ,vÑ p q

�
|γ| � p

|γ|
^ γ �

1
|γ| p! ^


p̧

i�1

¸
vPV 

¸
σPS�

p

εpσp i p qqσpγ p Ñ,vÑ p q

�
|γ| � p

|γ|
^ γ �

1
|γ| pp� 1q! ^


¸

vPV 

¸
σPS�

p

εpσqσpγ p Ñ,vÑ p q.

We deduce that
pdV hV � hV dV qγ � ^γ,

and we obtain the desired equality by linearity as Ωn,p � ^SpanpFn,pq and ^2 � ^.
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The expression of the horizontal homotopy operator is much more technical. We refer the
reader to [3, 57, 47] for its derivation in the context of differential geometry. Note that for n � 0,
the horizontal homotopy operator coincides with the one introduced for the variational complex
in Theorem 3.8.

Proposition 3.10. We define the horizontal homotopy operator hH : Ωn,p Ñ Ωn�1,p by

hHγ �
1
|γ|

8̧

q�0

n� 1
q � n� 1 ^DqEq�1γ.

It satisfies for n ¥ 1 and γ P Ωn,p,

pdHhH � hHdHqγ � γ.

Proof. For the sake of simplicity, we consider γ P Fn. We define for v P V

Jvγ �
8̧

q�0

¸
Πpvq�tr̂uYIYJ

|I|�q

n� 1
q � n� 1DIEI,r̂

v γ,

where we denote EI,r̂
v γ � p�1q|Πpvq|�pq�1qpDJγv�q

� and where r̂ becomes the new root of Jvγ.
On the first hand, we have

dH ^ γ � dH

¸
σPSn

εpσq

n! σγ �
¸

σPSn

εpσq

n! Drσ�1pnqσγ,

and JvdH ^ γ is given by

JvdH ^ γ �
8̧

q�0

¸
σPSn

¸
u�v

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � nqpn� 1q!D
IEI,r̂

v Drσ�1pnqÑuσγ

�
8̧

q�0

¸
σPSn

¸
ΠpvqYtrku�tr̂uYIYJ

|I|�q

εpσq

pq � nqpn� 1q!D
IEI,r̂

v Drσ�1pnqÑvσγ.

The expression of DIEI,r̂
v DrÑuγ satisfies for u P V :

DIEI,r̂
v DrÑuγ �

$'''&'''%
DIEI

v γ if r̂ � r, u � v,°
wPV DrÑwDIztruEIztru,r̂

v γ if r P I, u � v,

�
°

w�v DrÑwDIEI,r̂
v γ if r P J, u � v,

DrÑuDIEI,r̂
v γ if u � v.

Thus, for γ P Fn,p, JvdH ^ γ is given by

JvdH ^ γ �
8̧

q�0

¸
σPSn

¸
Πpvq�IYJ

|I|�q

εpσq

pq � nqpn� 1q!D
IEI

v σγ

�
8̧

q�1

¸
σPSn

¸
wPV

¸
Πpvq�tr̂uYIYJ

|I|�q�1

εpσq

pq � nqpn� 1q!D
rσ�1pnqÑwDIEI,r̂

v σγ
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�
8̧

q�0

¸
σPSn

¸
w�v

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � nqpn� 1q!D
rσ�1pnqÑwDIEI,r̂

v σγ

�
8̧

q�0

¸
σPSn

¸
u�v

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � nqpn� 1q!D
rσ�1pnqÑuDIEI,r̂

v σγ

�
8̧

q�0

n

q � n
DqEq

v ^ γ

�
8̧

q�0

¸
σPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � n� 1qpn� 1q!D
rσ�1pnqDIEI,r̂

v σγ.

As DqEq
v ^ γ is unchanged by the application of the wedge operator, we find

^JvdH ^ γ �
8̧

q�0

n

q � n
DqEq

v ^ γ

�
8̧

q�0

¸
νPSn

¸
σPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνq

pq � n� 1qpn� 1q!n!νDrσ�1pnqDIEI,r̂
v σγ.

On the other hand, we have

dH ^ Jv ^ γ �
¸

σPSn

εpσq

n! dH ^ Jvσγ

� dH

8̧

q�0

¸
σPSn

¸
νPSn�1

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνq

pq � n� 1qpn!q2 νDIEI,r̂
v σγ

�
8̧

q�0

¸
σPSn

¸
νPSn�1

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνq

pq � n� 1qpn!q2 Drpσνq�1pn�1qνDIEI,r̂
v σγ

�
8̧

q�0

¸
σPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � n� 1qn!D
I,r̂EI,r̂

v σγ

�
8̧

q�0

¸
σPSn

¸
νPSn

¸
ηPSn

ηpnq�n

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνηq

pq � n� 1qpn� 1q!pn!q2 Drpσνq�1pnqηpnpn� 1qqνDIEI,r̂
v σγ

�
8̧

q�0

q � 1
q � n� 1Dq�1Eq�1

v ^ γ

�
8̧

q�0

¸
σPSn

¸
ηPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσηq

pq � n� 1qpn� 1q!n!ηDrσ�1pnqDIEI,r̂
v σγ

�
8̧

q�1

q

q � n
DqEq

v ^ γ
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�
8̧

q�0

¸
σPSn

¸
ηPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσηq

pq � n� 1qpn� 1q!n!ηDrσ�1pnqDIEI,r̂
v σγ,

where we split the cases σνpn � 1q � n � 1 and σνpn � 1q � n � 1, and where we substitute ν
by νpnpn � 1qqη in the latter case. The last equality is obtained by substituting σ with νσ.
Using Proposition 3.6, we get

p^JvdH � dH ^ Jvq ^ γ �
8̧

q�0
DqEq

v ^ γ � ^γ. (3.8)

Summing on v P V gives the desired homotopy identity.

Remark 3.11. The identity (3.8) suggests simpler homotopy operators, obtained by fixing a
node v and considering the operator ^Jv. We emphasize that this approach does not work.
Indeed, given an aromatic form γ P Ωn,p, there is no canonical choice of the node v, so that Jvγ
is ill-defined, where hV γ is well-defined. In the proof of Proposition 3.10, Jvγ makes sense since
we consider a single aromatic forest γ P Fn,p.

3.3 The aromatic bicomplex with a divergence-free vector field

This section is devoted to the proof of Theorem 2.10. Proposition 2.6 and Proposition 3.9 extend
naturally to the divergence-free context. Proposition 3.10 is not valid anymore and we replace
it by the following result.

Proposition 3.12. We define

rhHγ �
1
|γ|

¸
vPV

8̧

q�0

n� 1
q � n� 1vRR

^DqEq�1
v γ.

For n ¡ 1 and γ P rΩn,p, the horizontal homotopy identity is

pdH
rhH � rhHdHqγ � γ,

while for n � 1, the identity is

pdH
rhH � rhHdHqγ � γ �Rγ. (3.9)

The remainder in (3.9) is the linear map Rγ � 1
|γ|Erγ for γ P rF1,p, with r the root of γ.

Moreover, if γ P rΩN
1,p satisfies dHγ � 0, then Rγ � 0 if and only if N ¡ 1. In particular, the

horizontal sequences in the divergence-free aromatic bicomplex are exact.

The proof of Proposition 3.12 follows the structure and notations of the proof of Proposi-
tion 3.10. We recall that the notations in the proof follow the convention of Remark 3.2.

Proof. We consider for simplicity γ P rFn. For v P V , we define

rJvpγq �
8̧

q�0

¸
Πpvq�tr̂uYIYJ

|I|�q

n� 1
q � n� 1vRR

DIEI,r̂
v γ.
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We have if r � v,

DIEI,r̂
v DrÑuγ �

"
0 if u � v,

DrÑuDIEI,r̂
v γ if u � v,

and if r � v,

DIEI,r̂
v DrÑuγ �

$'''&'''%
DIEI

v γ if r̂ � r, u � v,°
wPV DrÑwDIztruEIztru,r̂

v γ if r P I, u � v,

�
°

w�v DrÑwDIEI,r̂
v γ if r P J, u � v,

DrÑuDIEI,r̂
v γ if u � v.

Thus, rJvdH ^ γ is given by

rJvdH ^ γ � 1v�rσ�1pnq

� 8̧

q�0

¸
σPSn

¸
Πpvq�IYJ

|I|�q

εpσq

pq � n� 1vPRqpn� 1q!D
IEI

v σγ

�
8̧

q�1

¸
σPSn

¸
wPV

¸
Πpvq�tr̂uYIYJ

|I|�q�1

εpσq

pq � n� 1vPRqpn� 1q!D
rσ�1pnqÑwDIEI,r̂

v σγ

�
8̧

q�0

¸
σPSn

¸
w�v

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � n� 1vPRqpn� 1q!D
rσ�1pnqÑwDIEI,r̂

v σγ
�

�
8̧

q�0

¸
σPSn

¸
u�v

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � n� 1vPRqpn� 1q!D
rσ�1pnqÑuDIEI,r̂

v σγ

� 1v�rσ�1pnq

8̧

q�0

¸
σPSn

εpσq

pq � n� 1vPRqpn� 1q!D
qEq

v σγ

�
8̧

q�0

¸
σPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � n� 1vRRqpn� 1q!D
rσ�1pnqDIEI,r̂

v σγ

Then, we find for n � 1 and v P R,

^ rJvdH ^ γ �
8̧

q�0

¸
σPSn

¸
νPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνq

pq � n� 1vRRqpn� 1q!n!νDrσ�1pnqDIEI,r̂
v σγ,

and otherwise

^ rJvdH ^ γ �
8̧

q�0

n� 1vPR

q � n� 1vPR
DqEq

v ^ γ

�
8̧

q�0

¸
σPSn

¸
νPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνq

pq � n� 1vRRqpn� 1q!n!νDrσ�1pnqDIEI,r̂
v σγ,
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where for v P R, the wedge adds the missing term v � rσ�1pnq, and rescales the expression with
a coefficient n�1

n . On the other hand, we have

dH ^ rJv ^ γ � dH

8̧

q�0

¸
σPSn

¸
νPSn�1

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνq

pq � n� 1vRRqpn!q2 νDIEI,r̂
v σγ

�
8̧

q�0

¸
σPSn

¸
νPSn�1

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνq

pq � n� 1vRRqpn!q2 Drpσνq�1pn�1qνDIEI,r̂
v σγ

�
8̧

q�0

¸
σPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσq

pq � n� 1vRRqn!D
I,r̂EI,r̂

v σγ

�
8̧

q�0

¸
σPSn

¸
νPSn

¸
ηPSn

ηpnq�n

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσνηq

pq � n� 1vRRqpn� 1q!pn!q2

�Drpσνq�1pnqηpnpn� 1qqνDIEI,r̂
v σγ

�
8̧

q�0

q � 1
q � n� 1vRR

Dq�1Eq�1
v ^ γ

�
8̧

q�0

¸
σPSn

¸
ηPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσηq

pq � n� 1vRRqpn� 1q!n!ηDrσ�1pnqDIEI,r̂
v σγ

�
8̧

q�1

q

q � n� 1vPR
DqEq

v ^ γ

�
8̧

q�0

¸
σPSn

¸
ηPSn

¸
Πpvq�tr̂uYIYJ

|I|�q

εpσηq

pq � n� 1vRRqpn� 1q!n!ηDrσ�1pnqDIEI,r̂
v σγ.

Using Proposition 3.6, we get for n ¡ 1,

p^ rJvdH � dH ^ rJvq ^ γ �
8̧

q�0
DqEq

v ^ γ � ^γ,

and for n � 1,

p^ rJvdH � dH ^ rJvq ^ γ �
8̧

q�0
DqEq

v ^ γ � Er ^ γ1vPR � ^γ � Er ^ γ1vPR.

Summing on v P V gives the desired homotopy identities.
Following the proof of Proposition 3.4, we observe that ErdH � 0 on Ω2,p. Thus, we deduce

from the identity (3.9) that γ P ImpdHq if and only if dHγ � 0 and Erγ � 0 in the case n � 1.
Assume that dHγ � 0 for γ P ΩN

1,p, and apply Er to the homotopy identity. As E2
r � Er, it yields

Erγ �
1
N

Erγ.

We deduce that Erγ � 0 or N � 1. Thus, the bicomplex of order N is exact if and only
if N � 1.
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Remark 3.13. Let γ P rΩN
1 with N ¡ 1, define the modified homotopy operators by

rh1
H � rhH

�
1� 1

N � 1E
	

, rh2
H � rhH

�
1� 1

N � 1Er

	
.

Then, the homotopy identity (3.9) on rΩN
1 with N ¡ 1 is replaced by the simpler identity

pdH
rh2

H � rh1
HdHqγ � γ. (3.10)

The proof of (3.10) relies on the identities E2
r � Er and EdH � dHEr on rΩ1.

4 Applications and extensions
The study of the aromatic bicomplex brings a variety of new theoretical results, as presented
in Section 2, but also direct applications in numerical analysis. Subsection 4.1 is devoted to
the study of the generalised aromatic bicomplex, a natural extension of the aromatic bicomplex
that includes the Euler-Lagrange complex. In Subsection 4.2, we deduce from the exactness of
the aromatic bicomplex the dimensions of the spaces in the first two rows of the bicomplex, as
well, as the number of solenoidal forms. We describe further the divergences and the solenoidal
forms in Subsection 4.3. In Subsection 4.4, we draw a bridge between the existing notions of
integration by parts of Butcher trees by defining an alternative horizontal homotopy operator. In
Subsection 4.5, we give an explicit description of the B-series of an aromatic volume-preserving
integrator and we prove that an aromatic Runge-Kutta method cannot be volume-preserving.

4.1 The augmented aromatic bicomplex

Following [1, 2] and the work on the variational complex (3.2) of Subsection 3.1, we augment
the aromatic bicomplex with the aromatic equivalent of the Euler-Lagrange complex.

For p ¥ 1, define the interior Euler operator I : Ω0,p Ñ Ω0,p by

Iγ � ^E p γ � p�1q|Πp p q| ^ pD|Πp p q|γ p �q�,

write Ip � IpΩ0,pq, IN
p � IpΩN

0,pq, and the variational derivative δV � I � dV . The augmented
aromatic bicomplex is drawn in Figure 3. The edge complex (4.1) is called the Euler Lagrange
complex, and it is the object of ultimate interest here. Note that the variational complex (3.2)
is a subcomplex of the Euler Lagrange complex as δV � E� on Ω0.

. . . Ω2 Ω1 Ω0 I1 I2 . . .
dH dH dH δV δV δV (4.1)

Theorem 4.1. Define the augmented homotopy operators as

hHγ � ^
8̧

q�1

1
q

Dq�1Eq
p γ, hV γ � I � hV .

Then, the maps I and δV satisfy

I2 � I, IdH � 0, δ2
V � 0,

and the following identities hold

γ � pI � dHhHqγ, γ P Ω0,p, p ¥ 1,
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...
...

...
...

. . . Ω2,2 Ω1,2 Ω0,2 I2 0

. . . Ω2,1 Ω1,1 Ω0,1 I1 0

. . . Ω2 Ω1 Ω0

0 0 0

dH dH

dV

dH

dV dV

I

δV

dH dH

dV

dH

dV dV

I

δV

dH dH

dV

dH

dV dV

δV

Figure 3: The augmented aromatic bicomplex.

γ � pδV hV � hV δV qγ, γ P I1,

γ � pδV hV � hV δV qγ, γ P Ip, p ¡ 1.

In particular, the horizontal and vertical sequences of the augmented aromatic bicomplex are
exact, and the Euler-Lagrange complex (4.1) is exact.

We follow the approach of [1, Chap. 4] for the proof of Theorem 4.1.

Proof. We first observe that for all γ P F1,p,

IdHγ � ^
¸

v� p

p�1q|Πp p q|pD|Πp p q|Dr1Ñvγ p �q� �^p�1q|Πp p q|�1pDΠp p qDr1γ p �q� � 0.

Using Equation (3.3) with v � p gives the augmented horizontal homotopy identity

pI � dHhHq ^ γ � ^γ.

Applying I to this last equality yields I �I � I. Let us now look at the Euler-Lagrange complex.
Let γ P Ω0,p, then dV γ P Ω0,p�1. We apply the augmented horizontal homotopy identity to dV γ,

pIdV � dHhHdV qγ � dV γ.

We apply dV and use that dV and dH commute:

pdV IdV � dHdV hHdV qγ � 0.

Since IdH � 0, applying I yields
δ2

V γ � 0.

Let γ P Ip, the augmented horizontal homotopy applied to dV γ gives

dV γ � δV γ � dHhHdV γ. (4.2)

If p � 1, then we use the identity (4.2) in the vertical homotopy identity to get

γ � dV hV γ � hV δV γ � dHrγ,
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where we used that hV and dH commute and where rγ P Ω1,1. Applying I yields

γ � pδV hV � hV δV qγ.

If p ¡ 1, we apply the augmented horizontal homotopy identity to hV γ,

hV γ � hV γ � dHhHhV γ.

Applying the vertical derivative dV gives

dV hV γ � dV hV γ � dHdV hHhV γ, (4.3)

where we used that dH and dV commute. We use the identities (4.2) and (4.3) in the vertical
homotopy identity to get

γ � dV hV γ � hV δV γ � dHrγ,

where rγ P Ω1,p. As I � dH � 0 and Iγ � γ, we find

γ � pδV hV � hV δV qγ.

The exactness of the augmented aromatic bicomplex is a straighforward consequence of Theo-
rem 2.9 and of the augmented homotopy identities.

4.2 Combinatorics on the aromatic bicomplex

In this subsection, we determine the dimensions of the bottom two rows of the augmented
aromatic bicomplex in the standard and in the divergence-free case. The primary motivation was
to compute the dimension of the space of solenoidal (i.e., divergence-free) aromatic trees of each
order. However, the result revealed a surprisingly simple connection with another combinatorial
object, the self-looped scalar aromas, which allowed the construction of the fundamental spaces
associated with the divergence operator.

We recall the fundamental generating functions associated with graphical enumeration. The
number T N of rooted trees of order N (sequence A000081 in the OEIS [46]) has generating
function

tpzq �
8̧

N�1
T N zn � z � z2 � 2z3 � 4z4 � 9z5 � 20z6 � . . .

and satisfies the functional equation

tpzq � z exp
�

8̧

k�1

1
k

tpzkq

�
. (4.4)

Considering a rooted tree as a directed graph, each node except the root has a single out-
going edge. Thus, rooted trees are equivalent to the class of “mapping patterns” of func-
tions t1, . . . , N � 1u Ñ t0, . . . , N � 1u modulo the symmetric group SN�1 (node 0 is the root,
and we “forget the labels”).

The number |ΩN
0 | of scalar aromas in addition to the empty aroma (sequence A001372) has

generating function

apzq :� 1�
8̧

N�1
|ΩN

0 |z
n � 1� z � 3z2 � 7z3 � 19z4 � 47z5 � 130z6 � . . .
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and is related to tpzq by the equation

apzq �
8¹

k�1

�
1� tpzkq

	�1
.

The scalar aromas are mapping patterns of functions t1, . . . , Nu Ñ t1, . . . , Nu mod SN .
We introduce two new spaces, the aromatic forms with a 1-loop, called the self-looped aro-

matic forms Ω̊n,k, and their complements, the non-self-looped aromatic forms Ωn,k, and gener-
ating functions åpzq of Ω̊0 and apzq of Ω0. As for mapping patterns on t1, . . . , Nu, the mappings
in Ω̊0 (enumerated by sequence A217896) have at least one fixed point and those in Ω0 (also
known as the “functional digraphs”, enumerated by sequence A001373) have no fixed points.

Each pair consisting of one non-self-looped scalar aroma and one rooted tree generates a
scalar aroma of one lower degree: cut off the root and replace each new root by a self-loop.
The process is invertible (redirect all self-loops in an arbitrary scalar aroma to a new root).
Expressed in terms of generating functions, it writes

zapzq � tpzqapzq.

Therefore

åpzq � apzq � 1� apzq �
apzqptpzq � zq

tpzq
� 1 � z � 2z2 � 5z3 � 13z4 � 34z5 � 90z6 � . . . . (4.5)

The following result enumerates the first two rows of the augmented bicomplex and the
solenoidal forms. We refer to Table 1 and Table 2 for the dimensions for the first orders N .

Theorem 4.2. Let
bppu, zq �

8̧

k�0

8̧

N�1

��ΩN
k,p

��ukzN

be the bivariate generating function for row p of the aromatic bicomplex, let

cppzq �
8̧

N�1

��IN
p

�� zN

be the generating function of the type-p functional forms, and let

spzq �
8̧

N�1

��ΨN
�� zN

be the generating function of the solenoidal aromatic trees. Then

b0pu, zq � apzq exp
�

8̧

k�1

p�1qk�1

k
uktpzkq

�
,

b1pu, zq � b0pu, zq
tpzqp1� u� utpzqq

p1� tpzqq2
,

c1pzq � zb1p0, zq �
zapzqtpzq

p1� tpzqq2
,

spzq � apzqtpzq � åpzq.
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Proof. We first note that the aromatic trees Ω1 are given by the product of a scalar aroma
(enumerated by apzq) with a rooted tree (enumerated by tpzq). This is the Cartesian prod-
uct construction of enumerative combinatorics. Therefore the aromatic trees are enumerated1

by apzqtpzq.
An element of ΩN

k is given by the product of a scalar (enumerated by apzq) with a wedge
product of k rooted trees, enumerated by tpzq. Since the rooted trees are unordered and distinct,
this is the power set construction; the expression for b0pu, zq then follows from [20, Proposition
III.5].

The bottom row of the bicomplex is exact (Theorem 2.9), so the dimension of Ψ is given by
the alternating sum

spzq �
8̧

N�1

�
|ΩN

2 | � |ΩN
3 | � |ΩN

4 | � |ΩN
5 | � . . .

�
zN

�
8̧

N�1

�
|ΩN

1 | � |ΩN
0 | �

8̧

k�0
p�1qk|ΩN

k |

�
zN

� apzqtpzq � apzq � 1� b0p�1, zq

� apzqtpzq � apzq � 1� apzq exp
�
�

8̧

k�1

1
k

tpzkqq

�

� apzqtpzq � apzq � 1� apzqz

tpzq
using Eq. (4.4)

� apzqtpzq � åpzq using Eq. (4.5).

An element of Ωn,1 is obtained from an element of Ωn by marking a node with the symbol 1 .
The marked node can be in one of the scalar aroma components or in one of the rooted tree
components. Therefore, an element of ΩN

n,1 is either

(i) A scalar aroma with one marked node, times a wedge product of n distinct rooted trees;
or

(ii) An unmarked scalar aroma times the wedge product of n� 1 distinct rooted trees times a
single rooted tree with a marked node. The marked rooted tree can coincide with one of
the unmarked ones.

For type (i), we first enumerate the scalar aromas with one marked node in terms of tpzq as
follows. Consider the connected component containing the marked node. The marked node lies
either on the cycle or on one of the trees attached to the cycle. Those in the first group are
enumerated by the rooted trees with one marked node: delete the edge of the cycle that points
to the marked node (the construction is invertible). Those in the second group are enumerated
by sequences of two rooted trees, each with a marked node: add edges from the first root to
the first marked node and from the second root to the first root, and remove the mark from the
first marked node. The rooted trees with one marked node are enumerated by sequences (of any
length) of rooted trees: delete the outgoing edges from the nodes on the path from the root to
the marked node.

1This is a right-shift of sequence A126285, the partial mapping patterns. From a partial mapping pattern
on N � 1 nodes, add a new node (the root of the tree) and point any nodes without outgoing edges to it to get
an aromatic vector field; to invert, cut off the root.
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Putting this together, the rooted trees with one marked node are enumerated by the following
(sequence A000107),

wpzq :� tpzq � tpzq2 � tpzq3 � � � � � tpzq{p1� tpzqq.

The connected scalar aromas with one marked node are enumerated by wpzq�wpzq2 � tpzq{p1�
tpzqq2 (sequence A038002). The scalar aromas with one marked node are enumerated by
apzqtpzq{p1� tpzqq2 (sequence A027853). Including the unmarked scalar aroma component and
the wedge product of rooted trees gives the contribution from type (i) forms as b0pu, zqtpzq{p1�
tpzqq2.

For type (ii), combining the components of an unmarked form with one fewer trees (i.e. an
element of Ωn�1), enumerated by ub0pu, zq, and a marked rooted tree, enumerated by tpzq{p1�
tpzqq, gives the contribution from type (ii) forms as ub0pu, zqtpzq{p1� tpzqq.

Summing the results for type (i) and type (ii) forms gives the expression for b1pu, zq.
The functional forms in I1 are associated with scalar aromas with one marked leaf (containing

the symbol 1 ). They are bijective to the scalar aromas with one marked node of degree one
less: delete the marked leaf and mark the node to which it points (the process is invertible).
Therefore, we deduce |IN

1 | � |ΩN�1
0,1 | and this gives the result for c1pzq.

Note that
ΩN�1

1,1 � ΩN�1
0,1 � IN

1

and that all three spaces are enumerated by the mapping patterns on N (or N � 1) points with
one marked node.

Remark 4.3. As row 1 of the augmented bicomplex is exact, its alternating sum of dimensions
is zero. This is verified directly:

� 8̧

n�0
p�1qn|Ωn,1|

�
� |I1| � b1p�1, zq � c1pzq

� b0p�1, zq
tpzq2

p1� tpzqq2
�

apzqtpzqz

p1� tpzqq2

�
apzqz

tpzq

tpzq2

p1� tpzqq2
�

apzqtpzqz

p1� tpzqq2

� 0.

The following result extends Theorem 4.9 to the divergence-free case.

Theorem 4.4. Let rbppu, zq, rcppzq, and rspzq be the divergence-free analogues of the generating
functions bppzq, cppzq, and spzq. Then

rb0pu, zq �
zb0pu, zq

tpzq
,

rb1pu, zq � zb0pu, zq
tpzq � u� utpzqq

p1� tpzqq2
,

rc1pzq � zc1pzq,

rspzq � z �
zspzq

tpzq
� z �

zpapzqtpzq � åpzqq

tpzq
.
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First row: |ΩN
n | Second row: |ΩN

n,1| |IN
1 |

N n n
4 3 2 1 0 4 3 2 1 0

1 0 0 0 1 1 0 0 0 1 1 0
2 0 0 0 2 3 0 0 1 4 4 1
3 0 0 1 6 7 0 0 4 15 15 4
4 0 0 3 16 19 0 1 16 52 52 15
5 0 0 11 45 47 0 5 57 175 175 52
6 0 2 33 121 130 0 22 197 571 571 175
7 0 7 102 338 343 2 85 654 1838 1838 571
8 0 29 298 929 951 11 310 2137 5834 5834 1838
9 1 99 878 2598 2615 53 1078 6859 18363 18373 5834

Table 2: Dimensions of the bottom two rows of the augmented aromatic bicomplex for orders 1 to 9.

Proof. In each case we need to enumerate the non-self-looped elements of the aromatic bicom-
plex. The loops occur only in the scalar components. Recall that the non-self-looped scalars, rΩ0,
are enumerated by apzq � zapzq{tpzq. This gives the result for rb0 and, using Theorem 2.10, rspzq.

For the second row, we first consider rΩN
0,1, the scalar aromas with N nodes, no self-loops, and

one marked node indicated by 1 . These are enumerated by the self-functions of t1, . . . , N � 1u
with one marked node. That is, rΩN

0,1 � ΩN�1
0,1 . The construction is as follows. Consider an

element of ΩN�1
0,1 , that is, a directed graph with N � 1 nodes, each of which has exactly one

outgoing edge, with one marked node. Add a new node with an outgoing edge going to the
marked node, and redirect all self-loops to the new node; then, move the mark to the new node.
This gives a marked non-self-looped scalar aroma of degree N . The process is invertible: given a
marked scalar with no self-loops, redirect the edges that point to the marked node to themselves,
mark the node pointed to by the marked node, and delete the marked node. Therefore rΩN

0,1 has
generating function zapzqtpzq{p1� tpzqq2.

For the rest of the second row, rΩn,1, recall the two types of forms, type (i) (scalar is marked)
and type (ii) (tree is marked). For type (i), that the only change in the divergence-free case
is that the scalars must be non-self-looped, as just enumerated. For type (ii), we combine the
three components of non-self-looped scalars (enumerated by apzq), n� 1 unmarked rooted trees
(enumerated by ub0pu, zq{apzq), and one marked rooted tree (enumerated by tpzq{p1 � tpzqq).
The product of these three, plus the contribution from the forms of type (i), gives the result
for b1pu, zq.

The elements of rIN
1 � IprΩN

0,pq are linear combinations of scalar aromas with N nodes, one
marked leaf, and no self-loops. As in the general case, these are bijective to the scalar aromas
with one marked node of degree one less: delete the marked leaf and mark the node to which it
points. This gives the result for rc1pzq.

Note that we now have five isomorphic spaces,

ΩN�1
1,1 � ΩN�1

0,1 � IN
1 � rIN�1

1 � rΩN
0,1.

Each space is enumerated by the self-functions of t1, . . . , N � 1u with one marked node (and
generating function zapzqtpzq{p1� tpzqq2), but in a different way in each case.

We remark that the second row of the divergence-free augmented aromatic bicomplex is not
exact.
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4.3 Bases of the kernel and image of dH and d�H

In this subsection, we work specifically with dH : Ω1 Ñ Ω0 and we describe the image and the
kernel of dH and d�H . We recall that d�H : Ω�

0 Ñ Ω�
1 is the dual map of dH . We described

the dimension of Ψ � Ker dH in Subsection 4.2. The following result describes the dimensions
of Im dH , Ker d�H , and Im d�H .

Theorem 4.5. The scalar divergences Im dH have dimension |Ω̊0|. The conditions Ker d�H that
a scalar must satisfy to be a divergence have dimension |Ω0|. The conditions Im d�H that a vector
must satisfy to be divergence-free have dimension |Ω̊0|.

Proof. Recall the fundamental theorem of linear algebra for a linear map A : V Ñ W :

| Im A| � | Im A�| � rankA, | Im A| � |Ker A| � |V |, | Im A�| � |Ker A�| � |W |.

The space Im A� � AnnpKer Aq is the annihilator of the kernel of A (i.e., the conditions that
an element of A must satisfy in order to lie in the kernel) and Ker A� � AnnpIm Aq is the
annihilator of the image of A. Choosing A � dH gives the result.

Remark 4.6. Consider the aromatic tree γze P F1 obtained by cutting one edge e P E of γ P
F0, m1pγ, eq the coefficient of γ in dHpγzeq, and m2pγ, eq the number of edges pe P E of γ such
that γzpe � γze. Then, for γ P Ω0, d�Hγ� satisfies

d�Hγ� �
¸
ePE

m1pγ, eq

m2pγ, eq
pγzeq�.

We now construct bases of Ker dH , Im dH , Ker d�H , and Im d�H . We start with the basis of
the solenoidal forms.

Theorem 4.7. Let φ : Ω1 Ñ Ω̊0 be defined by attaching a self-loop to the root, extending by
linearity. Define any total order on T , then a basis of Ψ � Ker dH is

BΨ � tdHpϕφpt2q . . . φptl�1qφptl�1q . . . φptkqt1 ^ tlq, ϕ P F0 Y tHu, t1   � � �   tk P T u.

Proof. The map φ is surjective: given any self-looped scalar, removing one of the self-loops
gives a pre-image. Therefore, |Ker φ| � |Ker dH |. Let us first determine Ker φ. Consider
a self-looped scalar whose distinct self-looped connected components are φpt1q, . . . , φptkq for
trees t1   � � �   tk; it can be written ϕφpt1q . . . φptkq where ϕ is a scalar. Its distinct preimages
under φ are ϕφpt1q . . . tl . . . φptkq for l � 1, . . . , k. Therefore, the kernel of φ restricted to the
span of these preimages has dimension k � 1 and we consider

tϕpt1φpt2q � φpt1qt2qφpt3q . . . φptkq, . . . , ϕpt1φptkq � φpt1qtkqφpt2q . . . φptk�1qu

as a basis of Ker φ. We now map Ker φ to Ker dH by

ϕlpt1φptlq � φpt1qtlq ÞÑ dHpϕlt1 ^ tlq, where ϕl � ϕφpt2q . . . φptl�1qφptl�1q . . . φptkq,

extending by linearity. From exactness, the map is surjective. As |Ker φ| � |Ker dH |, it is an
isomorphism.
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Remark 4.8. One could wonder whether the set tdH ^ γ, γ P F2u is a basis of KerpdHq. This
is not the case in general. For N � 6, one finds for instance the following identity

dHp^ � ^ �^ �^ �^ �^

�^ �^ �^ �^ �^ �^ q � 0.

The following result shows that the divergences are a graph over the self-looped scalars.
Theorem 4.9. For α P Ω̊0, let kpαq be the number of self-loops in α, and ρpαq be the non-self-
looped scalar obtained from α as the sum of the redirection of all 1-loops to other nodes in all
possible ways. Then the map

Ω̊0 Ñ Im dH , α ÞÑ α � p�1qkpαq�1ρpαq

is an isomorphism, and generates a basis of Im dH .
Proof. Let V̊ be the set of nodes with self-loops of α. From Proposition 3.6, we deduce that
for v P V̊ , α � Evα P ImpdHq. If we have two nodes v, w P V̊ , then α � Evα P ImpdHq
and Evα � EwEvα P ImpdHq, so that α � EwEvα P ImpdHq. By applying iteratively this process,
we find that

α �
¹
vPV̊

Evα � α � p�1qkpαq�1ρpαq P ImpdHq.

As each self-looped scalar appears once in the image, the map is injective. The map is an
isomorphism as the domain and codomain have the same dimension.

Remark 4.10. The operation ρ in Theorem 4.9 corresponds to removing all self-loops in α by
repeated integration by parts, as illustrated in the following example on elementary differentials:

f i
i f j

j � pf if j
j qi � f if j

ij

� pf if j
j qi � pf if j

i qj � f i
jf j

i

� pf if j
j � f jf i

jqi � f i
jf j

i .

That is, f i
i f j

j � f i
jf j

i is a divergence. We describe this comparison with integration by parts
further in Subsection 4.4.
Corollary 4.11. No non-trivial combination of non-self-looped scalars in Ω0 is a divergence.
Corollary 4.12. The conditions to be a divergence Ker d�H are a graph over the dual of the
non-self-looped forms in Ω0.

In the following theorem, this graph is realized explicitly.
Theorem 4.13. Let pE � E be a set of edges of the scalar aroma β P Ω0 and let βz pE be β
with edges pE replaced by self-loops. Let mpβ, pEq be the number of ways that redirecting self-loops
of βz pE results in β. Let π : Ω0 Ñ Ω0 be defined by

πpβq �
¸
pE�E

p�1q| pE|mpβ, pEqβz pE
Then

tπpβq, β P Ω�
0u

is a basis of AnnpIm Aq, the conditions that a scalar must satisfy to be a divergence.
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Proof. The construction is directly related to that in Theorem 4.9. The conditions for px, yq to
lie on the graph tx, Axq : x P Rnu � Rn � Rm are y � Ax � 0, A P Rm�n. A basis for these
conditions is given by the rows of y � Ax, where Theorem 4.9 gives the columns of A. That
is, for each non-self-looped scalar β we need to determine the coefficient of β in ρpαq for each
self-looped scalar α. This is the expression for π: the term pE � H gives β, and the terms from
non-empty sets of edges pE give the α’s that can give rise to β.

Finally, we present a basis of Im d�H . It is quite straightforward, as we can find a suitable
subspace on which d�H is injective.

Theorem 4.14. The set
td�Hϕ�, ϕ P Ω̊0u

is a basis of Im d�H , the conditions that a form in Ω0 must satisfy to be divergence free.

Proof. For any linear map A : V Ñ W , xA�w�, vy � xw�, Avy � 0 for all w� P W � when v P
Ker A. Thus, divergence-free vectors do satisfy the given conditions. Furthermore, the dimension
of the set is correct. It remains to show that the set is linearly independent. This is the same
as showing that d�H |Ω̊�

0
is injective.

Let pr: Ω0 Ñ Ω̊0 be the natural projection to the self-looped scalars. From Theorem 4.9, the
divergences form a graph over the self-looped scalars. That is, pr � dH is surjective. Therefore
its dual d�H |Ω̊�

0
is injective.

4.4 Integration by parts of aromatic forests

The horizontal homotopy operator is often described in the differential geometry literature as an
integration by parts operator. The concept of integration by parts of trees was also introduced in
the context of stochastic numerical analysis in [36, 37] on exotic aromatic B-series (see also [8]).
We show in this section that a similar integration by parts process can be adapted in the context
of aromatic forms to define a different horizontal homotopy operator on Ω0,p.

Let γ P ΩN
0,p a linear combination of forests, let τ P FN

0,p one of these forests and v a vertex
of τ on a 1-loop. We denote apτq the coefficient of τ in γ, and θvpτq the forest τ where we
remove the edge linking v to itself and transform v into a root. The alternative horizontal
homotopy operator phH on Ω0,p is given by the following algorithm on ΩN

0,p, and extended to Ω0,p

by linearity.

Homotopy operator phH

Given γ P ΩN
0,p, initialize phHγ � 0 and pγ � γ � |γ|�1 Eγ.

while there is a 1-loop in a forest τ of pγ on a vertex v dophHγ Ð phHγ � apτqθvpτq,pγ Ð pγ � apτqdHθvpτq.
end while
return phHγ

Note that each iteration in the algorithm reduces the number of 1-loops by one. Thus, the
algorithm always terminates. We emphasize that the result of the algorithm is independent of
the order in which we detach the 1-loops. This is not the case in the similar algorithm proposed
in [36], as there is an extra term involved in the integration by parts process.
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Theorem 4.15. For γ P Ω0,p, the output phHγ of the algorithm is the horizontal homotopy
operator, up to a divergence-free term, that is,

dHphHγ � phHγq � 0.

Proof. After the algorithm terminates, pγ is given by

pγ � γ �
1
|γ|

Eγ � dH
phHγ � dHphHγ � phHγq,

where pγ does not contain any 1-loop and where we used Theorem 3.8. We deduce from Propo-
sition 3.6 that pγ P ImpdHq. According to Corollary 4.11, we find pγ � 0.

We now have two different ways to compute the horizontal homotopy operator on Ω0,p. The
first one, presented in Subsection 3.1, uses the Euler operators. The second one, in the spirit
of [36], is based on the repeated use of detaching and grafting operations on specific nodes.
We emphasize that the expressions of the homotopy operator given by these two methods are
different in general, but are always equal up to a divergence-free term. The two homotopy
operators can produce both concise and tedious outputs, and they outperform each other in
this manner on different forests. We refer the reader to Table 3 for some examples. This
difference in the number of terms increases rapidly with the order; for instance, for the form γ �

, hHγ has 6 terms, while phHγ has 26 terms. On the other hand, it is possible to find
examples where phH produces less terms than hH . It would be interesting to find a homotopy
operator with a minimal number of terms in the output, or a procedure to simplify the outputs
of a homotopy operator in the spirit of [1, Sect. IV.B]. Moreover, it is not known whether a
similar approach in the divergence-free context could yield a different homotopy operator. This
is matter for future work.

4.5 Explicit description of volume-preserving aromatic integrators

It is known that the only volume-preserving consistent B-series method is the exact flow [18, 31].
In [45], the question of the existence of a volume-preserving aromatic method is raised, where an
aromatic method is a one-step integrator that has an expansion as an aromatic B-series. In [6],
a methodology to create pseudo-volume-preserving interators is proposed, by substituting in a
standard Runge-Kutta method the vector field f with an aromatic B-series. We give in this
subsection an explicit expression of the form of a volume-preserving aromatic method, and we
use it to prove that there does not exist any aromatic Runge-Kutta integrator and to discuss
the form of a volume-preserving aromatic B-series method.

Consider a consistent one-step integrator (1.2) for solving the differential equation (1.1) with
the assumption divpfq � 0. We assume the integrator (1.2) has an expansion in aromatic B-
series given by the linear coefficient map a : rΩ1 Ñ R; that is, its (formal) Taylor expansion has
the form

Φpy, hq � y � F pBpaqqphfq, Bpaq �
¸

τPF1

apτq

σpτq
τ,

where σpτq is the cardinal of the set of automorphisms on the set of nodes V of τ that leave τ
unchanged (see [6]). We call such a method an aromatic B-series method. If in addition the
integrator reduces to a standard Runge-Kutta method when choosing a vector field f that
satisfies F pγqpfq � 0 for all γ P F1zT , we call the integrator an aromatic Runge-Kutta method.
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γ P Ω0 hHγ phHγ

0 0

1
6 � 1

6 � 1
6 � 1

6
1
3 � 1

3

1
6 � 1

6 � 1
6 � 1

6
1
3 � 1

3

2
3 � 1

3 � 2
3 � 2

3

0 0

1
3 � 2

3 � 2
3 � 2

3

Table 3: Comparison of the horizontal homotopy operators on Ω0 for the first orders.

An aromatic B-series method can be seen as the exact solution of the modified ODE (1.3),
and the modified flow is given by the aromatic B-series Bpbq satisfying Bpaq � Bpbq � Bpeq.
The operation � is the substitution of B-series and b : rΩ1 Ñ R is the coefficient map of the
modified flow. It is known that a and b satisfy b � e � a, where � is the substitution of B-series
coefficients [13, 17, 6]. The map e is the coefficient of the exact flow of (1.1). Its expression
is given for instance in [23, Chap. III] for Butcher trees. It is extended to the aromatic trees
by epγq � 0 if γ is composed of at least an aroma. The question raised in [45] is the following:
can we find an aromatic B-series method such that dHBpbq � 0, that is, such that the modified
B-series Bpbq is solenoidal. Note that choosing a � e yields a simple solution to the problem,
but there does not exist any reasonable numerical method whose coefficient map is given by the
exact flow coefficient e.

The main motivation for considering aromatic B-series instead of standard B-series comes
from the following negative result.

Theorem 4.16 ([18, 31]). The solenoidal combinations of rooted trees satisfy

SpanpT q XΨ � H, SpanpT q X rΨ � Spanp q.

In particular, the only volume-preserving consistent B-series method is the exact flow.

Note that in the standard context, Theorem 4.16 is a consequence of Theorem 4.9. Indeed,
let v �

°
i citi, ti P T , be a combination of rooted trees. As the divergences are graphs over the

self-looped scalars (see Theorem 4.9), dHv � 0 if the coefficient of each self-looped scalar in dHv
is zero. But prdHv �

°
i ciθptiq, where pr: Ω0 Ñ Ω̊0 is the natural projection to the self-looped

scalars, and the self-looped scalars θptiq are linearly independent.
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Following Theorem 4.16, one is interested in finding a class of non-trivial volume-preserving
consistent aromatic B-series methods. We deduce from the previous discussion and Theorems
2.9, 2.10, and 2.11 the following explicit description of the coefficients of an aromatic volume-
preserving integrator.

Theorem 4.17. If Bpaq is the aromatic B-series of a consistent volume-preserving integrator,
then there exists η P rΩ2 such that the modified flow is a B-series of the form Bp �dHηq and Bpaq
is given by the substitution

Bpaq � p � dηq �Bpeq.

More precisely, there exists a coefficient map α : rΩ2 Ñ R such that a is given by

a � p � � αd�HAσq � e, where Aσγ �
1

σpγq
γ. (4.6)

For the first orders, the B-series of a volume-preserving aromatic B-series method has the
form:

Bpaq � �
1
2 �

1
6 �

�1
6 �

1
2αp^ q

	
�

1
2αp^ q

�
1
24 �

�1
8 �

1
2αp^ q � αp^ q �

1
2αp^ q

	
�
� 1

24 �
1
2αp^ q �

1
2αp^ q �

1
4αp^ q

	
�

1
2αp^ q �

1
2αp^ q

�
� 1

24 �
1
2αp^ q �

1
4αp^ q

	
�
�1

2αp^ q � αp^ q �
1
2αp^ q

	
� . . .

Note that the coefficients of the bamboo trees (or tall trees) BT � t , , , . . . u coincide with
the ones of the exact flow. This fact has been noticed for standard B-series in particular in [33]
(see also [23, Lemma IV.3.2]). We deduce from this observation the following result.

Theorem 4.18. An aromatic Runge-Kutta method cannot be volume-preserving.

Proof. The only bamboo tree that appears in solenoidal forms is . Indeed d�H vanishes on BT as
the only solenoidal forms where a bamboo tree can appear are of the form dH^τ1τ2 where τ1, τ2 P
BT , and no bamboo tree appears in these forms. According to the identity (4.6), the B-series
of an aromatic volume-preserving method has to coincide with the exact flow Bpeq on the
bamboo trees BT . A Runge-Kutta integrator cannot be exact on all bamboo trees. As the
aromatic forests represent different elementary differentials (see [31]), any aromatic integrator
that reduces to a standard Runge-Kutta integrator when sending the aromas to zero cannot be
volume-preserving.

The methodology proposed in [6, Sect. 7] to obtain volume-preservation of high order and
the approach in [45, Sect. 9] give classes of aromatic integrators that can preserve volume up to
a high-order, but that cannot be volume-preserving. To build an aromatic volume-preserving
method, it is fundamental to start with an ansatz that is exact on bamboo trees (that is, the
method is exact for linear problems). A natural guess is to consider aromatic integrators that
reduce to exponential Rosenbrock integrators (see, for instance, [4, 30, 39]) when sending the
aromas to zero. This calls for future works that study the substitution law and the variational bi-
complex directly on aromatic exponential B-series, in order to find a volume-preserving aromatic
B-series method.
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5 Conclusion and future work
In this work, we introduced a new algebraic object, called the aromatic bicomplex, for the study
of aromatic forms. We studied the exactness of the bicomplex in the standard case and in the
divergence-free case. To this end, we introduced the Euler operators, the homotopy operators, as
well as an augmented bicomplex. The algebraic properties we proved have concrete consequences
on the numerical analysis of volume-preserving integrators. They allow to describe completely
the solenoidal forms and the B-series of an aromatic volume-preserving method. In particular,
we proved that there are no volume-preserving aromatic Runge-Kutta methods.

Many theoretical and applied questions arise from the present work. Following the results of
Subsection 4.5, it would be interesting to rewrite the substitution and divergence operations in
the context of exponential B-series, in order to find an aromatic exponential volume-preserving
method.

The integration by parts of (exotic) aromatic forests is a new operation that has applications
in stochastic numerical analysis and in the study of volume-preserving integrators. To the best
of our knowledge, few works study the structure of (exotic) aromatic forests equipped with the
integration by parts process. In particular, there is no explicit expression for the output of
the integration by parts process in the stochastic setting [36]. An exact formula would greatly
benefit the creation of high-order methods for solving ergodic SDEs.

There is a considerable literature on the variational bicomplex and the De Rham cohomology
(see [1] and references therein). It would be interesting to generalise some of the existing results
in the context of aromatic forms. For instance, one could try to find simpler expressions for the
homotopy operators (see Subsection 4.4), to find an augmented bicomplex in the divergence-
free case (see Subsection 4.1). Two major applications of the variational bicomplex are the
Noether’s theorems and the study of the Laplace-De Rham operator ∆ � dHd�H � d�HdH . It
would be interesting to see how these results translate to aromatic forms.
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Appendices
A First solenoidal forms
We write the generators of the solenoidal forms rΨN in the divergence-free case for the first orders
in Table 4. As a consequence of Theorem 2.11, we find all the generators by computing dHγ
for γ P rFN

2 , and by adding the trivial tree . For N ¤ 5, we observe that they form a basis
of the solenoidal forms (see Remark 4.8). Note how no bamboo trees appear in the solenoidal
forms, as discussed in Subsection 4.5.

B The aromatic bicomplex for the first orders
We present in Figures 4 and 5 the augmented aromatic bicomplex for N � 1, 2, 3 in the standard
case, as defined in Subsection 2.2. The divergence-free aromatic bicomplex is deduced from it
by deleting the 1-loops, and the extra column on the right. We give a basis of each space,
and we omit for conciseness the trivial spaces surrounding the bicomplex, and the wedge ^
when writing the aromatic forms in the diagrams. Note that the alternate sum of dimensions in
each horizontal and vertical sequence, and in the Euler-Lagrange complex adds up to zero, as a
consequence of Theorem 2.9 and Theorem 4.1.
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N γ P rFN
2 Solenoidal form 2dH ^ γ

1
3 �

4 � � �

2 � � 2 �

5 � � � � �

� 2 � � 2 � �

� � � � � � �

3 � � 3 �

� � � � �

2 � � � � 2 �

� 2 � � 2

Table 4: Generators of the solenoidal forms rΨN for the first orders N .
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Figure 4: The augmented aromatic bicomplex for N � 1 and N � 2. The wedges are omitted for
conciseness.
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Figure 5: The augmented aromatic bicomplex for N � 3. The wedges are omitted for conciseness.
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