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Abstract

These notes go with a course on stochastic differential equations, that was given at the univer-
sity of Bergen in Spring 2022. While we skip some of the details, we hope to give a practical
understanding of how SDEs work, and how to manipulate them, as well as a few applications
that appear in the recent literature.

We begin by giving an overview of the tools from measure theory and probability theory
that we need. We define the Brownian motion, and martingales in general, and use them to
define the stochastic integral with respect to a martingale. We give the definition of SDEs,
and prove the existence and uniqueness of a solution in the globally Lipschitz context. We
play with the Ito formula, the Stratonovich integral, and we say a word about rough paths
and SPDEs.

For the applications, we present the necessary tools for studying strong and weak approx-
imations of SDEs, and we give the proofs of convergence of a few numerical schemes. In
stochastic geometry, we give the ideas to define stochastic processes on manifolds.

We use the following textbooks and articles for this course:

• measure theory: [3]

• probability theory: [12]

• stochastic analysis: [11, 6, 2]

• numerical analysis: [5, 10, 4, 9]

Acknowledgements. The authors would like to thank all the participants for their helpful
comments and their interest in this course. The computations for the high weak order ap-
proximations were performed at the University of Geneva on the Baobab cluster using the
Julia programming language. The code is available on MittUiB, or on demand.
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Chapter 1

Introduction

An ordinary differential equation (ODEs) is an equation that contains a function x : RÑ Rd

and its derivatives. We typically study ODEs of the form

x1ptq � fpxptqq, xp0q � x0, (1.0.1)

where f is a given smooth vector field. If f is globally Lipschitz, then there exists a unique
solution to this problem. An alternative way of writing (1.0.1) is the integral formulation:

xptq � x0 �
» t

0
fpxpsqqds.

A stochastic differential equation (SDE) is a differential equation that includes a random
perturbation that we call noise. We could write it as

X 1ptq � fpXptqq � gpXptqqξptq, Xp0q � X0,

where ξ is the noise. The definition of ξ is not straightforward, and one prefers to use a
Brownian motion W (with ξ � dW {dt). We will write

dXptq � fpXptqqdt� gpXptqqdWt, Xp0q � X0,

which exactly stands for the integral formulation

Xptq � X0 �
» t

0
fpXpsqqds�

» t

0
gpXpsqqdWs.

The solution of this equation (if it exists) is a random variable. We have many things to
understand. First, what is the Brownian motion W? Second, how can we define the stochastic
integral

³t
0 gpXpsqqdWs? Finally, under which conditions do we have existence and uniqueness

to a SDE.
The Brownian motion is a stochastic process. We observe that is has "size

?
t". It is

definitely not differentiable in general, but it is continuous.
We observe surprising results. One would think that the solution of

dXptq � aXptqdt� bXptqdWt, Xp0q � 1,

is
Xptq � exppat� bWtq.
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This is not true in general. It depends on the definition we take for the stochastic integral.
With the Rienmann integral, we know that defining it with left, right or any rectangles yields
the same result. This is not the case with the stochastic integral. For the definition we will
take of the integral, the solution of the linear SDE is

Xptq � expp
�

a� b2

2



t� bWtq.

At the end of the reading group, we will see how to approximate numerically the solution
of a SDE, and we will study stochastic processes on manifolds.



Chapter 2

A quick review of measure theory
and probability theory

2.1 Measure theory

2.1.1 The Riemann integral

Recall, given a real interval ra, bs a partition of length n is a sequence a � x0   x1   � � �  
xn � b, and a tagged partition is a partition along with another sequence t1, . . . , tn such that
ti P rxi�1, xis.

For a function f : RÑ R and a tagged partition P of length n we define the Riemann sum

Rpf, P q :�
ņ

i�1
fptiqpxi � xi�1q.

In principle, then, the Riemann integral is the limit of Riemann sums as the mesh

}P } � max
i
|xi�1 � xi|

vanishes. More precisely,

Definition 2.1.1. Fix a function f and a real number R, and suppose for any ϵ ¡ 0 there
exists a δ ¡ 0 such that for any tagged partition P with mesh }P }   δ it holds that

|Rpf, P q � s|   ϵ.

Then we say that f is Riemann integrable, s is the Riemann integral of f over the interval
ra, bs, and write » b

a
fpxq dx � s.

Of course, this can be a bit cumbersome to use, and so we consider the equivalent notion
of Darboux integral. Fixing a partition P of length n, we define the upper and lower Darboux
sums over P

Upf, P q :�
ņ

i�1
sup

tiPrxi�1,xis
fptiqpxi � xi�1q
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Lpf, P q :�
ņ

i�1
inf

tiPrxi�1,xis
fptiqpxi � xi�1q

that is, the upper (lower) Darboux sum over a partition P maximizes (minimizes) the value
over each subinterval. Then the upper and lower Darboux sums of f are defined as

Upfq :� inf
PPPra,bs

Upf, P q

Lpfq :� sup
PPPra,bs

Lpf, P q

where Pra,bs denotes the set of all partitions of ra, bs. Finally, if Upfq and Lpfq are both finite
and equal then we define the Darboux integral» b

a
fpxq dx :� Upfq � Lpfq

and say that the function f is Darboux integrable.

Theorem 2.1.2. A function f is Riemann integrable over an interval ra, bs if and only if it
is Darboux integrable over the same interval, and the integrals are always equal.

Theorem 2.1.3. Suppose f is Riemann integrable over the interval ra, bs. Let Pn be any
sequence of tagged partitions of ra, bs with the property that }Pn} nÑ�8ÝÝÝÝÑ 0. Then

lim
nÑ�8Rpf, Pnq Ñ

» b

a
fpxq dx

The key point to take from the preceding theorem is the following: if f is Riemann
integrable, the choice of tags does not matter to the computation of the integral so long as
the mesh of the partition vanishes.

Riemann-Stieltjes Integral

We want to generalize the notion of integration by putting different “weight” at different
points on the domain. That is, we want to know when it’s reasonable to define» b

a
fpxq dgpxq � lim

}Pn}Ñ0

ņ

i�1
fptiqpgpxiq � gpxi�1qq

for some tagged partition Pn.
In the case that g is continuous and monotonic there is no issue; however it is possible for

this expression to be ill-defined when g oscillates too much.

Definition 2.1.4. Let g : RÑ R. Then the total variation of g is given by

V b
a pgq :� sup

PPPra,bs

ņ

i�1
|gpxiq � gpxi�1q|

where Pra,bs denotes all partitions of ra, bs.
We say g is of bounded variation if V b

a pgq   8.
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The formal definition of the Riemann-Stieltjes integral is analogous to that of the Riemann
integral, and we have the following standard existence result.

Theorem 2.1.5. If f is continuous and g is of bounded variation, then the Riemann-Stieltjes
integral » b

a
fpxq dgpxq

is defined.

Remark 2.1.6. The proceeding can be strengthened; so long as the set of discontinuities of f
is discrete and disjoint from the set of discontinuities of g then the integral will be defined.

Quadrature formulas

In numerical analysis, we use quadrature formulas to approximate integrals» 1

0
fpxqdx �

Ķ

k�0
αkfpxkq.

We say that the quadrature is of order p if it is exact for f polynomial of degree at most
p � 1. For instance, the left rectangle and right rectangle quadratures have order one, and
the midpoint rule has order two. We divide the interval ra, bs in N subintervals of equal
size. We apply the quadrature formula on each subinterval, and we obtain, under regularity
assumptions on f , that

lim
NÑ8

N�1̧

n�0

Ķ

k�0
αkfpa� pb� aq{Npn� xkqq �

» 1

0
fpxqdx.

It means that whatever the quadrature I take, it always converges to the integral of f . This
is not the case with the stochastic integral.

2.1.2 Measure Spaces

We can consider the integration of a function f over the interval ra, bs to be a way of “measur-
ing” the interval. In order to generalize that, we recall the fundamentals of measure theory.

First, given a space X, we recall that a σ-algebra A of X is a collection of subsets of X
containing the empty set and closed under complements and countable unions. We note that
the following stronger statements follow from the definition for a σ-algebra:

• A contains both X and the empty set.

• A is closed under countable intersections and countable unions.

We call a space X equipped with a σ-algebra A a measurable space; a map µ : A Ñ r0,�8s
such that

• µpHq � 0

• (σ-additive) µ
��8

i�1 Ai

� ¤ °8
i�1 µpAiq for any Ai P A

is called a (σ-additive) measure, and the triple pX, A, µq is called a measure space.



2.1. Measure theory 6

Remark 2.1.7. Given a measure space pX, A, µq one can define its completion pX, Ā, µ̄q such
that

• A � Ā with µ̄pAq � µpAq for all A P A,

• If µpAq � 0 for some A P A, then every set B � A is in Ā and µ̄pBq � 0.

A measure space such that pX, A, µq � pX, Ā, µ̄q is said to be complete, and we will always
assume that any measure space we work with is complete.

Note: there are many generalizations of these notions, but we will work exclusively with
σ-additive measures, and frequently on probability spaces. That is, a measure space pΩ, F ,Pq
is called a probability space if PpΩq � 1, in which case we say

• Ω is a sample space,

• F is a set of events,

• P is a probability measure.

Measurable functions

Suppose pX, Aq and pY, Bq are measurable spaces, and let f : X Ñ Y . We say that f is
measurable if for all B P B it holds that f�1pBq P A.

In particular, we consider the case Y � R and B � BpRq the Borel σ-algebra. That is,
BpRq is the smallest σ-algebra containing the open sets of R.

Theorem 2.1.8. The Borel σ-algebra is generated by any of the following sets:

• tp�8, bq, b P Ru
• tp�8, bs, b P Ru
• tpa,8q, a P Ru
• tra,8q, a P Ru

Lebesgue measure

We consider the specific case on R. For an interval ra, bs, the reasonable choice of measure is
clearly lpra, bsq :� b� a. We define the Lebesgue outer measure as

L�pEq � inf
#¸

i

lpIiq : E �
¤

i

Ii, Ii is a countable collection
+

There is the Carathéodory condition for a set E that for any set A

L�pAq � L�pAX Eq � L�pAX Ecq

Theorem 2.1.9. The Lebesgue measurable collection A of subsets of R that satisfy the
Carathéodory condition is a σ-algebra, and the triple pR, A, Lq is a measure space. We call
L � L�|A the Lebesgue measure.



7 Chapter 2: A quick review of measure theory and probability theory

2.1.3 Construction of the Lebesgue integral

Given a measure space pX, A, µq we can define a notion of integration determined by the
measure.

1. For the indicator function

χApxq �
#

1 x P A

0 x R A

we want to set »
X

χA dµ :� µpAq

which we extend to simple functions of the form

f �
¸

i

αiχAi

as »
X

f dµ :�
¸

i

αi

»
X

χAi dµ �
¸

i

αiµpAiq

for countable families of measurable sets Ai P A.

2. We extend to non-negative, measurable functions f by»
X

f dµ � sup
f̃PF

»
X

f̃ dµ

where
F � tf̃ : f̃pxq ¤ fpxq, f̃ simpleu

denotes the set of simple functions bounded above by f .

3. For a general measurable function f , write f � f� � f� where f� and f� are non-
negative measurable functions, then define»

X
f dµ �

»
X

f� dµ�
»

X
f� dµ.

The nontrivial part of this is to show that the second step is well-defined for any measurable
function.

Lebesgue integration vs Riemann integration

We have the important result showing that the Lebesgue integral is strictly a strengthening
of the Riemann integral.

Theorem 2.1.10. Let f : R Ñ R be Riemann integrable. Then it is also Lebesgue integrable
using the Lebesgue measure on R, and the integrals agree. That is, for a   b,» b

a
fpxq dx �

»
ra,bs

fpxq dLpxq



2.2. Probability theory 8

2.2 Probability theory

2.2.1 Probability space, random variables

Definition 2.2.1. A probability space is a measure space pΩ, F ,Pq with PpΩq � 1.

The sets A in F are called events, and PpAq is the probability of the event A. If PpAq � 1,
we say that A holds almost surely (or a.s.).

We write pE, Eq a measurable space (typically pRd, BpRdqq).

Definition 2.2.2. A function X : Ω Ñ E is a random variable is it measurable, that is,

@A P E , X�1pAq P F .

Definition 2.2.3. Let X : pΩ, Fq Ñ pE, Eq be a random variable. The law of X is the
probability measure given by

µXpAq � PpX P Aq � P �X�1pAq.

Then, pE, E , µXq is a probability space.

Example: Let Ω � t1, 2, 3, 4, 5, 6u, F � PpΩq and X be the result of a D6. Then, with
E � Ω and E � F , X is a random variable. It satifies PpX � iq � 1{6, and it defines µX

completely:

µX � 1
6pδ1 � � � � � δ6q,

where δx is the probability measure satisfying δxpAq � 1txPAu.
When the law of a random variable can be written with a countable number of δx, it is

called a discrete random variable. Let us now see the continuous random variables.

Definition 2.2.4. A random variable X : pΩ, Fq Ñ pRd, BpRdqq has a density w.r.t the
Lebesgue measure λ if there exists ρ : Ω Ñ Rd s.t.

µXpAq �
»

A
ρpxqdλpxq, A P BpRdq.

We also write it dµX � ρdλ.

Example: A few densities (+drawings):

• the uniform law Upra, bsq, ρpxq � 1
b�a1txPra,bsu,

• the exponential distribution Epλq, ρpxq � λe�λx1tx¥0u,

• the Gaussian distribution N pm, σ2q, ρpxq � e�px�mq2{2σ2
?

2πσ
.
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2.2.2 Independence

Definition 2.2.5. Two events A, B P F are independent if PpA X Bq � PpAqPpBq. For a
family pAiqiPI , it generalizes in PpXiPJAiq �

±
iPJ PpAiq, for all J � I finite. The σ-algebras

pFiq are independent if for all Ai P Fi, the events pAiqiPI are independent. The random
variables pXiq are independent if the σ-algebras σpXiq are independent.

Note that if we take multiple random variables Xi defined on the same measure space
pΩ, F ,Pq and taking values in pEi, Eiq, then X � pX1, . . . , Xnq takes values in pE1 � � � � �
En, E1 b � � � b Enq. The Xi are called the marginals of X.

Proposition 2.2.6. The random variables X1,. . . , Xn are independent if and only if

µpX1, . . . , Xnq � µX1 . . . µXn .

Equivalently, if X � pX1, . . . , Xnq has a density rhoXpx1, . . . , xnq � ρ1px1q . . . ρnpxnq, then
the random variables X1,. . . , Xn are independent.

Example: If ρpx, yq � 1
3π expp�px2 � 2xy � 5y2q{6q, the density of X is given by ρXpxq �³

ρpx, yqdy � 1?
15π{2e�4x2{30. Similarly one obtains for Y , ρY pyq � 1?

3π{2e�4y2{6. As ρpx, yq �
ρXpxqρY pyq, the random variables are not independent.

2.2.3 Expectation, variance, characteristic function

Definition 2.2.7. Given a random variable X and a function ϕ, the expectation of ϕpXq is
the Lebesgue integral of ϕpXq with respect to the probability measure P. If Er|ϕpXq|s   8, the
integral exists and we have

ErϕpXqs �
»

Ω
ϕpXpωqqdPpωq �

»
E

ϕpxqdµXpxq.

The variance of X is the quantity VarpXq � ErX2s � ErXs2.

Exercise: If X � bppq, ErXs � p and VarpXq � pp1� pq. If X � N pm, σ2q, its expectation
is m and its variance is σ2.

Proposition 2.2.8. If X1,. . . , Xn are independent r.v. such that Er|ϕipXiq|s   8 (resp.
VarpXiq   8), we have

Erϕ1pX1q . . . ϕnpXnqs � Erϕ1pX1qs . . .ErϕnpXnqs

VarpX1 � � � � �Xnq � VarpX1q � � � � �VarpXnq.

Lemma 2.2.9 (Chebyshev’s inequality). If X is a positive random variable and p ¥ 1, then

PpX ¥ λq ¤ 1
λp

ErXps
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Exercise: prove it!

Definition 2.2.10. The characteristic function of a random variable X taking values in Rd

is
φXpλq � Ereiλ�Xs.

The characteristic function is the equivalent of the Fourier transform in probability.

Proposition 2.2.11. • If X and Y share the same characteristic function, they have the
same law.

• If X1,. . . , Xn are independent, then

φX1�����Xnpλq � φX1pλq . . . φXnpλq.

• If X is real valued, then φ
pkq
X p0q � ikErXks.

Exercise: prove the second and third points.

2.2.4 Modes of convergence

Definition 2.2.12. Here are the different modes of convergence :

• pXnq converges to X almost surely if there exists A P F with PpAq � 1 such that for all
ω P A, Xnpωq Ñ Xpωq. We write Xn Ñ X a.s..

• pXnq converges to X in Lp if Er|Xn �X|ps Ñ 0. We write Xn
LpÑ X.

• pXnq converges to X in probability if for all δ ¡ 0, Pp|Xn �X| ¡ δq Ñ 0. We write
Xn

PÑ X.

• pXnq converges to X in law if µXnpAq Ñ µXpAq for all A P E. We write Xn ñ X.

Proposition 2.2.13. almost sure ñ Pñ L and L8 ñ � � � ñ L1 ñ P.

Proposition 2.2.14. • If Xn Ñ X a.s., and f is continuous, then fpXnq Ñ fpXq a.s.
(resp. in P, in Lp).

• There exists a metric on the convergence in probability.

• If Xn
PÑ X, there exists a subsequence that converges a.s. to X.

• If Xn
PÑ X and pXnq is uniformly integrable, then Xn

L1Ñ X.

• If Xn ñ X and X is a constant, then Xn
PÑ X.

The Borel-Cantelli lemma is a useful tool to go from a convergence in probability to an
almost sure convergence.

Lemma 2.2.15 (Borel-Cantelli). Let pAiq be a sequence of events in F , and

A � tω P Ω, there exists an infinity of i s.t. ω P Aiu.
If
°

PpAiq   8, then PpAq � 0.
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Theorem 2.2.16. The following assertions are equivalent:

• Xn ñ X

• for all g : RÑ R continuous and bounded, ErgpXnqs Ñ ErgpXqs.
• φXnpλq Ñ φXpλq

Example: if PpXn � 1 � 1{nq � 1{2 and PpXn � 0q � 1{2, prove in different ways that
Xn ñ bp1{2q.

2.2.5 Gaussian random variables, Gaussian vectors and limit theorems

Definition 2.2.17. A real random variable X is a standard Gaussian if it has the following
density with respect to the Lebesgue measure:

fXpxq � e�x2{2
?

2π
.

We write X � N p0, 1q in this case, and X � N pµ, σ2q if X�µ
σ � N p0, 1q.

Exercise: Using the characteristic function φXpλq � ErexppiλXqs, show that the sum of
independent Gaussians is a Gaussian. We recall that φ describes completely random variables,
that is, if φX � φY , then X and Y follow the same law.

Definition 2.2.18. A random vector X P Rd is a Gaussian vector if for all a P Rd, a �X is
Gaussian.

Proposition 2.2.19. A Gaussian vector X is uniquely determined by its expectation µ �
pErX1s, . . . ,ErXdsq and its covariance matrix Γ � pCovpXi, Xjqqij. If Γ is positive definite,
the associated density is

fXpxq � e�px�µqT Γ�1px�µq{2

p2πqd{2adetpΓq .

Example 2.2.20. If X1,. . . ,Xd are independent standard Gaussians, X is a random vector
and X � N p0, Idq.
Proposition 2.2.21. Let pXnq be a sequence of Gaussians Xn � N pµn, σ2

nq with σn ¡ 0, such
that Xn ñ X. Then, X is Gaussian and X � N plim µn, lim σ2

nq. If in addition, Xn
PÑ X,

then Xn
LpÑ X.

Exercise: Admitting that lim µn and lim σ2
n exist, prove the convergence in law with the

help of the characteristic function.
Let us now look at the law of large numbers.

Theorem 2.2.22 (Law of Large Numbers). Let pXnq be a sequence of iid random variables.
If Er|X1|s   8, then

1
n

ņ

i�1
Xi Ñ ErX1s a.s.
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Application: (Monte-Carlo estimators) Let pXnq be a sequence of iid uniform random
variables on B, a measurable bounded domain in Rd. Let f be a map such that fpX1q P L1,
then

1
n

ņ

i�1
fpXiq Ñ 1

λpBq
»

B
fdλ a.s.

We can approximate integrals with this kind of estimators. The speed of convergence is usually
much slower than for quadrature formulas in low dimension. If we work in high dimension,
it is the class of methods we have. Moreover, Monte-Carlo estimators do not assume much
regularity assumptions on the function f .

Theorem 2.2.23 (Central Limit Theorem). Let pXnq be real iid L2 random variables with
µ � ErXns and σ2 � VarpXnq. Let SN � 1

N

°N
n�1 Xn, then we have

?
NpSN � µq

σ
ñ N p0, 1q.

Proof. Use the characteristic function, apply a Taylor expansion up to order two, and take
the limit.

Exercise: (Moivre-Laplace) Take Xn � bp1{2q and prove the CLT in this context, with the
help of the characteristic functions (Hint: Find the law of SN ).
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Stochastic processes, martingales
and Brownian motion

3.1 Stochastic processes
Definition 3.1.1. Let T P R be an index set (typically R�, r0, T s or N) and pXptqqtPT be
a collection of random variables defined on the same probability space pΩ, F ,Pq and taking
values in a measurable space pE, Eq (typically pRd, BpRdqq). Then, X is a stochastic process.

The map X is actually a map pt, ωq P T � Ω ÞÑ Xpt, ωq. Xp., ωq is called a trajectory,
realization or a path. If T P Z, X is a discrete stochastic process.

Definition 3.1.2. Given a stochastic process Xptq, we denote Ft � σpXpsq, 0 ¤ s ¤ tq. If
Fs � Ft for s ¤ t, then tFt, t P T u is called a filtration associated to X.

The filtration represents the information we have up to time t. The more the time moves
on, the more information we have.

Definition 3.1.3. A stochastic process Xptq is adapted to the filtration pFtq if Xptq is Ft-
measurable.

It makes sense to say that 2 random variables are the same if they are equal almost
everywhere. For the equivalence of stochastic processes, we have multiple choices.

Definition 3.1.4. Let pXptqq and pY ptqq be two stochastic processes indexed by T , defined
respectively on pΩ, F ,Pq and pΩ1, F 1,P1q, and taking values in a measurable space pE, Eq.

• X and Y are equivalent if for all t1, . . . , tn P T , the marginals pXpt1q, . . . , Xptnqq and
pY pt1q, . . . , Y ptnqq have the same law.

• Y is a modification of X if for all t P T , PpXptq � Y ptqq � 0.

• X and Y are indistinguishable if PpsuptPT |Xptq � Y ptq|E � 0q � 1.

We claim that iiiq ñ iiq ñ iq. If T is a countable set, then iiiq ô iiq.
Example 3.1.5. Let Y � 0 and X � 1ω�t with T � Ω � r0, 1s and the Lebesgue measure.
Then, for t fixed, PpXptq � Y ptqq � Pptω, ω � tuq � Ppttuq � 0, and Y is a modification of
X. However, we have

Ppsup
tPT

|Xptq � Y ptq| � 0q � 0,

that is X and Y are not indistinguishable.
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Theorem 3.1.6 (Criterion of Kolomogorov). Let pXptqqtPr0,T s be a stochastic process taking
values in pE, Eq such that there exists C, ε ¡ 0, δ ¡ 1, s.t. for all s, t,

Er|Xptq �Xpsq|δEs ¤ C |t� s|1�ε .

Then, for all α P r0, ε{δr, there exists a continuous modification Y of X whose trajectories
Y p., ωq are α-Hölderian on r0, T s almost surely.

3.2 Conditional expectation and martingales
Definition 3.2.1. Let X be a random variable on a probability space pΩ, F , Pq, and let G P F
be a σ-algebra. The conditional expectation ErX|Gs of X given G is a random variable Z such
that

• Z is G-measurable,

• ErX1As � ErZ1As (
³
A XdP � ³

A ZdP) for all A P G.

If Y is a random variable on the same probability space, we define the conditional expectation
ErX|Y s of X given Y as ErX|σpY qs.
Remark 3.2.2. If X P L2pΩ, Fq, the conditional expectation ErX|Gs can be understood as
the projection of X on the vector space L2pΩ, Gq. It solves the least squares problem:

}ErX|Gs �X}2 � min
Y PL2pΩ,Gq

}Y �X}2 .

Example 3.2.3. For discrete random variables, the conditional expectation is given by

ErX|Y � ys �
¸

xiPpX � xi|Y � yq �
¸

xi
PpX � xi, Y � yq

PpY � yq .

For instance, let us play a game with two dice. X and Y are respectively the values of
the first two dice, and Z � X � Y . The law of X|Y � 2 is Upt1, . . . , 6uq. The law of
Z|Y � 2 is Upt3, . . . , 8uq. The law of X|Z � 5 is Upt1, . . . , 4uq. The conditional expectation
�ErX|Z � 5s � 2.5.

For continuous random variables, the density of X|Y is

ρX|Y �ypxq �
ρpX,Y qpx, yq

ρY pyq .

It is indeed a density as »
ρX|Y �ypxqdx � 1.

Proposition 3.2.4. If X P L1pΩ, Fq, the conditional expectation exists and is unique up to
sets of measure zero. In addition, the conditional expectation satisfies the following properties:

• X ÞÑ ErX|Gs is linear a.s.,

• if X is G-measurable and XY P L1, ErX|Gs � X and ErXY |Gs � XErY |Gs a.s.,

• ErErX|Gss � ErXs,
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• If X and Y are independent, ErX|Y s � ErXs a.s.,

• If X ¤ Y a.s., ErX|Gs ¤ ErY |Gs a.s..

Definition 3.2.5. Let X be an adapted stochastic process on T � R such that Er|Xptq|s ¤ 8
for all t P T . Then, Xptq is a martingale if

Xpsq � ErXptq|Fpsqs a.s., s ¤ t.

Xptq is a submartingale if

Xpsq ¤ ErXptq|Fpsqs a.s., s ¤ t.

Xptq is a supermartingale if

Xpsq ¥ ErXptq|Fpsqs a.s., s ¤ t.

The term martingale appeared in casinos when creating gambling strategies. Indeed it
typically represents a fair game.

Example 3.2.6. We toss a coin multiple times. If the result is head, we gain 1 NOK, and we
lose 1 NOK if its tail. We denote Xn the result of the n-th throw, i.e.PpXn � 1q � PpXn �
�1q � 0.5. Let us write Sn � X1 � � � � � Xn the total sum we got or lost at the n-th step.
Then, Sn is integrable, and

ErSn�p|S1, . . . , Sns � ErSn�p|X1, . . . , Xns
� ErX1 � � � � �Xn|X1, . . . , Xns � ErXn�1 � � � � �Xn�p|X1, . . . , Xns
� X1 � � � � �Xn � ErXn�1 � � � � �Xn�ps
� Sn.

Thus pSnq is a martingale.

We should use local martingales for the construction of the integral, but we will use
martingales for the sake of simplicity (any martingale is a local martingale).

Definition 3.2.7. An adapted stochastic process pMtqt is a local martingale if there exists
a sequence of stopping time τn such that τn Ñ 8 and pMminpt,τnqqt is a uniformly integrable
martingale.

Exercise (Gambler’s ruin): Let X1, . . . , Xn be iid variables such that PpX1 � 1q � p and
PpX1 � �1q � 1 � p � q. The random walk pSnq on t0, ..., Nu is defined as follows. For
i ¥ 1, as long as Si�1 is different from 0 and N , its i-jump is Xi. Values 0 and N are called
absorbing for the walk, meaning that Sn is stationary if it reaches 0 or N . This example was
first studied by de Moivre, who was modeling a gambler who would bet 1 NOK at every hand
until either he is ruined or he reaches a total fortune of N . De Moivre’s martingale is defined
by Yn � pq{pqSn .

• Check that Yn is indeed a martingale. What is the associated σ-algebra?

• Compute Ppwalk is absorbed at 0|S0 � kq.
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Definition 3.2.8. A stopping time T : Ω Ñ r0,8r relative to the filtration Ft is a map such
that for every t, tT ¤ tu P Ft.

Theorem 3.2.9 (Doob’s stopping time). Let X be a martingale, and T a stopping time, both
with respect to the filtration Ft. If one of the three conditions is satisfied:

• T is bounded,

• X is bounded and T   8 a.s.

• T P L1 and there exists a real K such that for all n,

|Xn �Xn�1| ¤ K a.s.

Then, we have
ErXT s � ErX0s.

3.3 The Brownian motion
In 1827, Robert Brown observes stochastic dynamics in the motion of pollen in water. In 1900,
Bachelier develops a first theory of stochastic analysis and applies it to describe fluctuations
in stock prices. In 1905, Einstein defines the Brownian motion.

We want to model the motion of particles in 1D. We denote fpx, tq the density of particles
at x and time t, ρxpy, τq the probability that a particle in x moves to x� y in a time τ . We
thus have

fpx, t� τq �
» �8

�8
fpx� y, tqρxpy, τqdy.

A Taylor expansion gives

fpx, t� τq � fpx, tq

�1hkkkkkkkkikkkkkkkkj» �8

�8
ρxpy, τqdy�Bf

Bx
px, tq

�0hkkkkkkkkkikkkkkkkkkj» �8

�8
yρxpy, τqdy

� 1
2
B2f

Bx2 px, tq
» �8

�8
y2ρxpy, τqdy � . . .

We write
D � lim

τÑ0

» �8

�8
y2 ρxpy, τq

τ
dy.

Then f satisfies the PDE
Bf

Bt
px, tq � D

2
B2f

Bx2 px, tq,

whose solution is fpx, tq � 1?
2πDt

e�
x2

2Dt , i.e. the probability distribution of a Gaussian random
variable N p0, Dtq.
Definition 3.3.1. A real-valued stochastic process W defined on R� is a Brownian motion if

• W0 � 0,

• Wt �Ws � N p0, t� sq,
• for all times 0   t1   � � �   tn, the increments W pt1q, W pt2q � W pt1q, . . . , W ptnq �

W ptn�1q are independent.
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Exercise: find the density of X � pW pt1q, W pt2q, . . . , W ptnqq. For n � 2, we find

ρXpx1, x2q � 1
2π
a

t1pt2 � t1q
expp� x2

1
2t1

q expp�px2 � x1q2
2pt2 � t1q q.

Proposition 3.3.2. A Brownian motion satisfies the following properties:

• Wt � N p0, tq, W is a martingale,

• ErWts � 0, ErW 2
t s � t, ErWtWss � minpt, sq,

• W has a α-Hölderian modification for 0   α   1{2. It is in particular continuous.

• For almost every ω P Ω, W p., ωq is nowhere differentiable.

The derivative of W can be understood as a distribution, and is often called white noise.

Proof. 1 and 2 are straightforward. We admit 4. 3 uses the Kolmogorov criterion. Indeed,
we have Er|W ptq �W psq|2s � |t� s|. Similarly, one finds

Er|W ptq �W psq|2ks � p2kq!
2kk! |t� s|k .

Using the Kolmogorov criterion with δ � 2k and ε � k�1 gives that there exists a modification
Y of W that is α-Hölderian with α   k�1

2k � 1
2� 1

2k , and this for every k. Hence the result.

Definition 3.3.3. A Brownian motion in Rd is a vector whose components are independent
Brownian motions in R.

Remark 3.3.4 (Numerical simulation of BM). We use a discretization tn � nh of r0, T s with
Nh � T . Let ξ1, . . . , ξN be independent Gaussian vectors of law N p0, Idq. We define

Wn�1 � Wn �
?

hξn, W0 � 0.

Then, W is a numerical approximation of the Brownian motion. Note that the increments
are indeed independent, that Wn � N p0, tnIdq, and that pWnq is a martingale.

Proposition 3.3.5. Let W be a Brownian motion, then

• (homogenization) Wt�h �Wh is a BM,

• (symmetry) �Wt is a BM,

• (scaling/autosimilarity) λWt{λ2 is a BM for λ ¡ 0,

• (inverting time) tW1{t is a BM.

Let W and M be 2 stochastic processes such that Mptq � W 2
t � t, then W is a BM iff M is

a martingale. (Theorem of Lévy)

Proof. The first points are left as an exercise (you can also plot it on a computer to observe
these properties numerically). Let us prove one implication of the last point. Mptq is adapted
and L1 as W 2

t � χ2. Then

ErMptq �Mpsq|Fss � ErW 2
t �W 2

s |Fss � s� t
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� ErpWt �Wsq2 � 2WspWt �Wsq|Fss � s� t

� ErpWt �Wsq2s � 2WsErpWt �Wsqs � s� t

� t� s� 0� s� t � 0.

Hence the result.

We define the random variables Ta � inftt ¥ 0, Wt � au.
Proposition 3.3.6. The Ta are stopping times, they are finite a.s. (recurrence of the BM),
and for a   0   b, they satisfy

PpTa   Tbq � b

b� a
, PpTb   Taq � �a

b� a
.

Proof. By recurrence of the BM, we have

PpTa   Tbq � PpTb   Taq � 1.

Then, we apply the Doob theorem to the martingale Wt^Ta^Tb
, and we obtain in the limit

t Ñ8:
ErWTa^Tb

s � aPpTa   Tbq � bPpTb   Taq � ErW0s � 0.

We admit the recurrence of the BM (see law of Blumenthal).

3.4 Construction of the Brownian motion

Construction with random walks/numerical approximation: The Brownian motion
can be seen as a limit of random walks. We work on r0, T s, with a discretization tn � n∆t.
We define the sequence of iid random variables pYkq by PpYk � �

?
∆tq � 0.5. Then, the

expectation is 0 and the variance ∆t. The sum of these random variables Xn � Y1 � � � � � Yn

satisfies ErXns � 0 and ErpXnq2s � n∆t � tn. We interpolate linearly the points Xn in a
function Xptq, that satisfies

ErXptqs � 0, ErpXptqq2s � t� op∆tq.

One can prove that, as ∆t Ñ 0, Xptq converges in law to a Brownian motion. Indeed, by the
CLT,

Xn

tn
� Y1{

?
∆t� � � � � Yn{

?
∆t?

n
ñ N p0, 1q,

that one can extends into Xptq ñ N p0, tq. We refer to [5] for more details on the simulation
of Brownian motions. Note that one could replace the Yk by any r.v. with expectation 0 and
variance 1.

Wiener’s construction: Another possibility for constructing the Brownian motion
on r0, 1s is to sum standard Gaussian random variables against an orthonormal basis. In
L2pr0, 1sq, we have

p1r0,ts,1r0,ssq � minps, tq.
In L2pΩq, we have

ErWtWss � minps, tq.



19 Chapter 3: Stochastic processes, martingales and Brownian motion

The idea is that the map 1r0,ts Ñ Wt can be extended as an isometry, called the Wiener
isometry IW . We take penq an orthonormal basis of L2pr0, 1sq, then ξn � pIW penqq is an
orthonormal basis of L2pΩq, that is, Erξiξjs � δij . Choosing ξn to be standard independent
Gaussian random variables is natural. Then, we have

Wt �
8̧

n�1
ξnp1r0,ts, enq.

This series converges in L2. For the following particular choice of orthonormal basis, the series
converges uniformly:

Wt � ξ0t�
8̧

n�1
ξn

?
2 sinpπntq

πn
.

Note that the series of the differentials does not converge in general.

3.5 Regularity of trajectories
Definition 3.5.1. Let f : ra, bs Ñ R and Π � pt1 � a, t2, . . . , tp � bq a partition of ra, bs. We
write

VΠf �
¸

tiPΠ
|fpti�1q � fptiq| , V 2

Πf �
¸

tiPΠ
|fpti�1q � fptiq|2 .

The total variation of f on ra, bs is V pfq � supΠ VΠf , while the quadratic variation of f on
ra, bs is V 2pfq � lim|Π|Ñ0 V 2

Πf , where |Π| � sup |ti�1 � ti|. If the total variation of f is finite
(resp. quadratic variation), we say that f has bounded variation (resp. bounded quadratic
variation).

Proposition 3.5.2. If f is continuous and V pfq   8, then V 2pfq � 0.

Proof. We have the estimate

V 2
Πf ¤ max

|u�v|¤|Π|
|fpuq � fpvq|V pfq.

Taking the limit |Π| Ñ 0 yields the result.

Exercise: If f is C1pra, bsq, then VΠf � ³b
a |f 1pxq| dx.

Proposition 3.5.3. If W is a BM, then its quadratic variation on r0, T s is V 2pW q � T
almost surely (and V pW q � 8 almost surely).

Proof. We prove the preliminary results that ErV 2pW q � T s � 0 and ErpV 2pW q � T q2s � 0.
The rest of the proof uses the Borel-Cantelli lemma and the Markov inequality.

First, we have by a simple calculation

V 2
ΠpW q � T �

p�1̧

i�1
pW pti�1q �W ptiqq2 � pti�1 � tiq.

As the random variables in the sum have mean zero, we get ErV 2pW q � T s � 0.
For the second moment, we have

ErpV 2pW q � T q2s �
p�1̧

i�1
ErpW pti�1q �W ptiqq4s � 2

p�1̧

i�1
pti�1 � tiqErpW pti�1q �W ptiqq2s
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�
p�1̧

i�1
pti�1 � tiq2

�
p�1̧

i�1
3pti�1 � tiq2 � 2pti�1 � tiq2 � pti�1 � tiq2

� 2
p�1̧

i�1
pti�1 � tiq2 � 0,

where we used that the quadratic variation of the differentiable function fptq � t vanishes.

Definition 3.5.4. Let M be a martingale, then we write xM, Myt the quadratic variation of
M in probability on r0, ts. For M , N two martingales, we write (polarization)

xM, Nyt � 1
2pxM �N, M �Nyt � xM, Myt � xN, Nytq.

Theorem 3.5.5. We have

xM, Nyt �
P

lim
|Π|Ñ0

¸
i

pMti�1 �MtiqpNti�1 �Ntiq.

x., .yt is bilinear symmetric. Moreover M2
t � xM, Myt is a martingale.

Indeed for the Brownian motion, we had that W 2
t � t is a martingale.

We now realise that martingales and BM have a lot in common. The following result links
the two concepts.
Theorem 3.5.6. If Mt is a martingale bounded in L2 with M0 � 0, then there exists a BM
Wt such that Mt � W pxM, Mytq.

3.6 Brownian motion and PDEs
Let upx, tq � Erϕpx�W ptqqs, we will see in the following that u satisfies the following PDE:

Bu

Bt
� 1

2∆u.

We give the Dirichlet problem, for D a bounded open set of Rd, and f : BD Ñ R continuous,
there exists a unique function u that is C2pDq, continuous on D, and such that

∆u � 0, u � f on BD.

The Walk On Sphere (WOS) algorithm is the following. First, for x P D and r Ps0, 1s, and
pUnq a sequence of iid UpSdq random variables, we define

Xxpn� 1q � Xxpnq � rdpXxpnq, BDqUn, Xxp1q � x.

One proves that the sequence pXxpnqq converges a.s. to Xxp8q P BD.
Theorem 3.6.1. Let upxq � ErfpXxp8qqs, then u is the unique solution of the Dirichlet
problem.

There exists a handful of numerical methods to solve the Dirichlet problem such as finite
differences or finite elements. The WOS algorithm has the advantage that it is easy to
implement, and its convergence does not require some regularity assumption on D and its
boundary. In high dimension, it outperforms the deterministic algorithms.

Project: see Villa-Morales, 2011.



Chapter 4

Construction of the stochastic
integral

References for this chapter - [6, 2].

4.1 Construction of the Itô integral

4.2 The Ito formula

4.3 A word on the Stratonovich integral
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Chapter 5

Stochastic differential equations

5.1 Definition, examples

Let pΩ, F ,P, Ft, W ptqq be the probability space, equipped with a filtration such that W is
adapted for this filtration. We consider the stochastic differential equation

dXptq � fpt, Xptqqdt� gpt, XptqqdW ptq, Xp0q � X0,

with fpt, xq P Rd, gpt, xq P Rd�k and W a k-dimensional Brownian motion. We understand
this equation as its integral formulation. If g is a constant, we say that it is a SDE with
additive noise. If it is gpxq, we say multiplicative noise. The function f is called the drift,
while we call gdW the martingale part/diffusion of the SDE.

We recall the Stratonovich conversion

dX � fpXqdt� gpXq � dW

mean
dX � fpXqdt� 1

2g1pxqgpxq � gpXqdW.

We first mention a few important examples. One of the central models is the Black-Scholes
model

dSptq � Sptqpµdt� σdW ptqq.
Sptq is the price of an asset, µ the drift and σ the volatility. The solution is given by

Sptq � S0 expppµ� σ2{2qt� σW ptqq.

If σ � 0, we typically find the rate of a savings bank account (and µ is usually small). If σ is
large, the market is driven by randomness. See numerical experiments.

The underdamped Langevin equation models the motion of particles in a fluid

dq � pdt

dp � �γpdt�∇V pqqdt� σdW.

If one lets the friction γ go to infinity, we obtain the overdamped Langvin dynamics

dX � �∇V pXqdt� σdW,
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which we will study closely in the numerical analysis part of the course. If V is quadratic, we
obtain an Ornstein–Uhlenbeck process

dX � �λXdt� σdW.

Exercise: compute the expectation and covariance CovpXpsq, Xptqq of X.
If the SDE has the form

dXptq � ΠMpXptqqfpXptqqdt�ΠMpXptqqgpXptqq � dW ptq, Xp0q � X0,

where ΠMpxq � Id�∇ζ |∇ζ|�2 ∇ζT and ζ is a smooth function taking values in R, then Xptq
lies on the manifold M given by the constraint ζpXptqq � ζpX0q (Exercise: check that indeed
dζpXptqq � 0). For instance, for the sphere, ΠSd�1pxq � Id � xxT {pxT xq. The Brownian
motion on the sphere satisfies:

dX � pId � xxT {pxT xqq � dW.

In 2D, it simplifies into

dX �
�

0 �1
1 0



X � dW � �1

2Xdt�
�

0 �1
1 0



XdW.

One can check that pcospW ptqq, sinpW ptqqq is the solution.
We mention the stochastic oscillator q2 � �ω2qdt� dW that is written rigorously as

dq � pdt

dp � �ω2qdt� dW.

Its solution is the following if pp0q � 0:

qptq � q0 cospωtq � 1
ω

» t

0
sinpλpt� sqqdW psq.

See numerical experiments.
Exercise: compute the variance of qptq. Find the exact formula if pp0q � 0.
In general, we do not have an explicit expression of the solution of a given SDE. We are

usually interested in its behaviour, or in the average of a function of the solution ErϕpXptqqs.
For Langevin dynamics, Er|pptq|2s is proportional to the temperature of the system, which is
a key quantity in thermodynamics. (Exercise: what is the equation satisfied by ErSptqs in the
Black-Scholes model?)

5.2 Existence and uniqueness of solutions
A more general theorem is the following.
Theorem 5.2.1. Let fpt, xq and gpt, x be measurable functions, that are Lipschitz in x uni-
formly in t P r0, T s and satisfy

|fpt, xq| ¤ Cp1� |x|q, |gpt, xq| ¤ Cp1� |x|q.
If X0 P L2pΩq, then the SDE

dXptq � fpt, Xptqqdt� gpt, XptqqdW ptq, Xp0q � X0,

has a unique solution in
Proof. Do the proof together with the class. See Kuo (go fast on the Borel-Cantelli part for
simplicity).
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5.3 SDEs and PDEs

5.3.1 Generator and the Kolmogorov equation

Often in physical applications, one is interested in the average of a function of the solution
of the SDE, that is, upx, tq � ErϕpXptqq|Xp0q � xs. This function u is a major link between
SDEs and PDEs.

We introduce the space Cp
P pRd,Rq of test functions that are in Cp such that ϕ and its first p

derivatives have at most polynomial growth. For simplicity, we work with autonomous SDEs
from now on. Our notation for derivatives is the following

ϕpkqpa1, . . . , akq �
ḑ

i1,...,ik�1

Bkϕ

Bxi1
. . . Bxik

a1
i1 . . . ak

ik
.

We also denote by peiq the canonical basis of Rq (depending on the context).
The function u satisfies the following PDE.

Theorem 5.3.1 (Talay). Let fpxq and gpxq P C2p�2 with bounded partial derivatives, let
ϕ P C2p�2

P , then upx, tq P C2p�2
P and it satisfies

Bu

Bt
px, tq � Lupx, tq, upx, 0q � ϕpxq.

The linear operator L is called the generator of the SDE and is given by

Lϕ � ϕ1f � 1
2

ķ

i�1
ϕ2pgei, geiq.

This PDE is called the forward Kolmogorov equation. There exists an alternate way to
write the last term of L in the literature, but the one we use here is more convenient for the
numerical analysis part.

Example: The generator of dX � dW is L � 1
2∆, and the Kolmogorov equation associ-

ated to simple Brownian dynamics is the heat equation (hence the name diffusion part). For
the overdamped Langevin dynamics, it is L � �∇V �∇� σ2

2 ∆. Note that for additive noise,
the generator is always elliptic. For the constrained overdamped Langevin, we find

Lϕ � ϕ1pΠMfq � σ2

2

ḑ

i�1
ϕ2pΠMei, ΠMeiq � σ2

2

ḑ

i�1
ϕ1pΠ1

MpΠMeiqeiq.

This operator is hypoelliptic, but is elliptic on the manifold M.

Proof. We apply the Itô formula to ϕpXptqq. It gives

dϕpXq � ϕ1pfqdt� ϕ1pgqdW � 1
2

ķ

i�1
ϕ2pgei, geiqdt.

We write the integral formulation and take the expectation

ErϕpXptqqs � ϕpxq�
» t

0
Erϕ1pXpsqqpfpXpsqqqsds�1

2

ķ

i�1

» t

0
Erϕ2pXpsqqpgpXpsqqei, gpXpsqqeiqsds.
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We deduce
upx, tq � ϕpxq �

» t

0
ErLϕpXpsqq|Xp0q � xsds.

We admit that E and L commute (for simplicity), and we get the result.

A question now is: given a generator L, does there exist an SDE associated to it? We
refer to [6] for an answer. (give a few insights without details)

Application of the methodology: solving the Dirichlet problem with the WOS.

5.3.2 A word on SPDEs

Stochastic partial differential equations are beyond the scope of this course. We just give a
few examples, that are important in numerics.

Stochastic Schrödinger equations with a stochastic perturbation

du � ∆udt� |u|2σ udt� gpuqdW,

or with a white noise dispersion (fiber optics)

idu � ∆u � dβ � |u|2σ udt.

The noise can also depend on the space variable x, and not only in t. In practice, all sorts
of noises are useful, and it is important to understand what kind of noise is associated to the
equation.

Stochastic heat equations with a stochastic perturbation

du � ∆udt� gpuqdW � 0,

or with a white noise dispersion
du � ∆u � dβ.

To simplify these equations, we consider spatial discretizations of them. For instance, for
the Schrödinger equation, we get an equation of the form

dX � AXdt� F pXqdt�GpXqdW � 0,

where X is a vector that contains the coefficients associated to the different frequencies.
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Hints of numerical analysis of SDEs

6.1 Different modes of convergence

We want to solve the SDE dX � fpXqdt � gpXqdW (recall dimensions). The question now
is: what do we want to approximate? Approximating the exact trajectory is called a strong
approximation. As discussed before, we can approximate the average of a function of the
solution. This is a weak approximation. For certain systems, called ergodic, the system
reaches an equilibrium. It then makes sense to approximate the average of a function of the
solution at equilibrium. We keep in mind that for underdamped Langevin dynamics, this
quantity of interest is typically the temperature of the system.

6.1.1 Strong approximation of SDEs

We present the Euler-Maruyama method

Xn�1 � Xn � hfpXnq � gpXnq∆Wn.

We use the notation ∆Wn � W ptn�1q �W ptnq for simplicity. Note that ∆Wn � N p0, hIdq.
We also introduce the Milstein method

Xn�1 � Xn � hfpXnq � gpXnq∆Wn � 1
2g1pXnqgpXnqp∆W 2

n � hq.

We find again this correction term that we saw in the conversion Itô-Stratonovich.

Definition 6.1.1. A method pXnq is said to have strong order γ ¡ 0 if for T fixed and h ¤ h0
small enough such that Nh � T , there exists a constant independent of h and N such that

Er|Xptnq �Xn|2s ¤ Chγ , n � 0, . . . , N.

Proposition 6.1.2. The Euler method has order 1{2 in general and the Milstein method has
order 1. If we have additive noise (g is constant), the two methods coincide and have order 1.

Proof. Hard and technical.

It is considered hard to build high order methods. One needs to simulate iterated stochastic
integrals, and these are expensive and difficult to simulate.
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6.1.2 Weak approximation of SDEs

A possible solution is to approximate upx, tq � ErϕpXptqq|Xp0q � xs instead. Then we care
only about the law of the solution. We rewrite the Euler-Maruyama scheme as

Xn�1 � Xn � hfpXnq �
?

hgpXnqξn.

The random variable pξnq are independent identically distributed and follow approximately
the same law as ∆Wn{

?
h

L� N p0, Idq. We will see that if we want weak order p, we ask that

Erξ2q
i s �

p2qq!
2qq! , q � 0, . . . , p.

An obvious choice would be ξi � N p0, 1q, but we often prefer to use bounded random variables
for stability reasons. For instance, for order 2, one can take

Ppξi � 0q � 2
3 , Ppξi � �

?
3q � 1

6 .

Definition 6.1.3. A method pXnq is said to have weak order γ ¡ 0 if for T fixed and
h ¤ h0 small enough such that Nh � T , for all test functions ϕ P C8P , there exists a constant
independent of h and N such that

|ErϕpXptnqqs � ErϕpXnqs| ¤ Chγ , n � 0, . . . , N.

The intuition from this definition is that if you approximate correctly the moments of a
bounded random variable, you approximate its law correctly (see characteristic function/Laplace
transform).

In practice, we have to approximate the expectation with a statistical estimator. We
apply the integrator pXnq for different randomness a high number of times M . Then, our
approximation of upX0, T q is

sU � 1
M

M̧

i�1
ϕpXpmq

N q.

The new error estimate that we get is of the form

�� sU � upX0, T q�� ¤ Chγ � C?
M

,

where the error bound for the estimator is given by the CLT. The term in OpM�1{2q is hard
to improve. There are variance-reduction techniques, for instance with antithetic coupling
or MLMC methods, but this term is often the biggest in the expansions. This is why order
two is already high order in the stochastic setting. The main term of the error is not the
discretization term. We emphasize though that combining variance-reduction techniques and
high-order discretizations is not straightforward.

Proposition 6.1.4. The Euler-Maruyama method has weak order 1 in general.

In particular, the weak order is an integer for the class of methods we will consider.
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6.1.3 Ergodicity and approximation of the invariant measure

We say that the process Xptq is ergodic if it has a unique invariant measure µ satisfying for
each test function ϕ and for any deterministic initial condition X0 � x,

lim
TÑ8

1
T

» T

0
ϕpXpsqqds �

»
Rd

ϕpxqdµpxq.

It means that, whatever the initial condition, the trajectory will visit in long time the entire
space. It will spend more time at some places than in others, and this is described by the
measure µ.

Thanks to the uniform ellipticity of the Langevin generator, the overdamped Langevin
dynamics are ergodic (with growth assumptions on the potential). The constrained Langevin
dynamics are also ergodic. Note that µ is absolutely continuous wrt the Lebesgue measure in
the Rd case, and wrt to the measure on M induced by the Euclidean metric in the manifold
case.

6.2 Weak convergence analysis

6.2.1 Euler-Maruyama method

Do the proof of global order 1 of [10]. Skip the details on the regularity of the modified test
function.

6.2.2 High order weak integration of SDEs

Present from [7] the Talay-Tubaro expansion, the trees, the application on Runge-Kutta meth-
ods for solving Langevin dynamics. Show the order 2 calculations and talk about the different
formalisms of stochastic trees.
Open questions:

• Runge-Kutta methods of any order for multiplicative noise ([1])

• Associated tree formalism

• Simpler formalism in the context of the invariant measure?

6.2.3 High order integration with constraints

Present from [8, 9] the equation, constraints, examples from molecular dynamics, the gen-
erator, the projection methods, the constrained Euler method, the tree system, algebraic
properties of the tree system, order conditions in simple cases.
Open questions:

• Simpler formalism for writing the generator and the Talay-Tubaro expansion?

• Different class of methods than projection methods, Lie-group methods?

• Rewrite everything directly on a manifold, without the need of the embedding in Rd.
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Chapter 7

Hints of stochastic differential
geometry

Reference for this chapter - SDE and PDE: Solving PDE by running a Brownian Motion, A.
Thalmaier.
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