Équation de Pell-Fermat

Références: Caldero, Germoni, Histoires hédonistes de groupes et de géométrie - Tome 2, p 388

L'objectif est de résoudre l'équation de Pell-Fermat, i.e chercher les couples d'entiers (x, y) vérifiant $x^2 - dy^2 = 1$ avec d un entier supérieur ou égal à 2 sans facteur carré.

Théorème.

Soit d un entier naturel sans facteur carré et soit \mathcal{H} l'hyperbole d'équation $X^2 - dY^2 = 1$ dans le plan \mathbb{R}^2 . Soit $E = M_0 = (1,0)$. On admet l'existence de $M_1 = (X_1,Y_1)$, un point de \mathcal{H} où X_1 et Y_1 sont des entiers naturels avec $X_1^2 + Y_1^2$ aussi petit que possible. Alors l'ensemble des points entiers de la branche de \mathcal{H} qui contient M_0 est le groupe engendré par M_1 . L'ensemble des points entiers de \mathcal{H} forme un sous-groupe isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$.

 $D\acute{e}monstration$. • On calcule, en coordonnées, l'application $\varphi: M \in \mathcal{H} \mapsto M_1 \star M \in \mathcal{H}$. On pourrait le faire directement mais c'est compliqué. On va faire un changement de repère. On passe au repère OXY où M_0 a pour coordonnées (1,1), en posant

$$\begin{cases} x = X + \sqrt{dY} \\ y = X - \sqrt{dY} \end{cases}$$

Notons (x_1, y_1) les coordonnées de M_1 dans ce repère. Si un point M a pour coordonnées (X, Y) dans le premier repère et (x, y) dans le deuxième, alors $M_1 \star M$ a pour coordonnées $(x_1 x, y_1 y)$ dans le deuxième repère et

$$(X',Y') = (X_1X + dY_1Y, Y_1X + XY_1)$$

dans le premier.

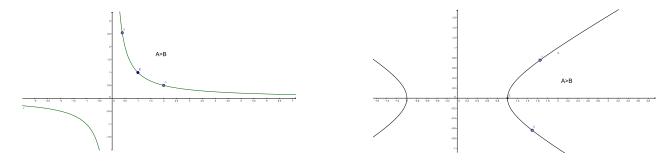
En effet, la droite parallèle à (M_1M) passant par E a pour équation

$$\tilde{y} - 1 = \frac{y - y_1}{x - x_1} (\tilde{x} - 1).$$

 $\varphi(M)$ est donc l'intersection de cette droite avec l'hyperbole $\tilde{y} = \frac{1}{\tilde{x}}$. On trouve facilement le résultat attendu après quelques calculs.

- L'hyperbole \mathcal{H} est la réunion de deux branches. On appelle \mathcal{H}_0 celle qui contient E. On remarque que $(x,y) \in \mathcal{H}_0$ si et seulement si $(x,y) \in \mathcal{H}$ et x > 0. Comme $x_1 > 0$, il s'ensuit que \mathcal{H}_0 est stable par φ et forme même un sous-groupe de \mathcal{H} pour *.
- On remarque que $p:(x,y) \in \mathcal{H}_0 \mapsto x \in \mathbb{R}^{+*}$ est bijective. On peut donc mettre l'ordre de \mathbb{R}^{+*} sur \mathcal{H}_0 . De plus, $x = \sqrt{1 dY^2} + \sqrt{dY}$ (car $X^2 dY^2 = 1$). Cette fonction de Y est strictement croissante donc l'ordre se lit indifféremment sur la coordonnée x ou sur la coordonnée Y.

Pour cet ordre, la fonction φ est strictement croissante sur \mathcal{H}_0 car $x_1 > 1$ (car $X_1 \ge 1$ et $Y_1 \ge 0$).



• Pour tout n entier, posons $M_n = M_1^n = (X_n, Y_n)$. Il est immédiat que $M_{-1} = (X_1, -Y_1)$ d'où on tire par récurrence que $Y_{-n} = -Y_n$ pour tout n entier. Comme φ est strictement croissante et que $M_{n+1} = \varphi(M_n)$, la

suite (M_n) est strictement croissante. De plus, comme $X_1 \ge 1$, $Y_1 > 0$ et $X_n \ge 1$ pour tout $n, Y_{n+1} > Y_n$ pour tout $n \in \mathbb{Z}$. Comme les Y_n sont entiers, (Y_n) diverge vers $+\infty$.

- Soit M = (X, Y) un point entier de \mathcal{H}_0 . D'après ce qui précède, il existe un entier n tel que $Y_n \leq Y < Y_{n+1}$, donc $M_n \leq M < M_{n+1}$. Notons $M' = (X', Y') = M_{-n} \star M$. Grâce à la croissance stricte de φ , donc de φ^{-n} , on a $M_0 \leq M' < M_1$. Mais, par hypothèse, M_1 est la solution entière minimale de l'équation de Pell-Fermat, donc $M' = M_0$ puis $M = M_n$.
- On remarque pour terminer que la réflexion $\sigma:(X,Y)\mapsto (-X,Y)$ échange les deux branches de \mathcal{H} et préserve \mathbb{Z}^2 , et on peut affirmer que les points entiers de \mathcal{H} sont les $(\pm X_n,Y_n)$ pour $n\in\mathbb{Z}$. Comme les Y_n sont symétriques, on peut même dire que les points entiers sont les $\pm M_n$ pour $n\in\mathbb{Z}$. On pose l'application

$$\Gamma \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$$

$$\varepsilon M_n \mapsto (\varepsilon, n)$$

et on vérifie qu'elle forme bien un morphisme de groupes.

L'ensemble des points entiers de \mathcal{H} forme donc bien un sous-groupe isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$.

Corollaire.

Soit d un entier naturel supérieur ou égal à 2 et sans facteur carré, alors il existe une solution fondamentale $x_1 = X_1 + \sqrt{d}Y_1$ solution de l'équation de Pell-Fermat $X^2 - dY^2 = 1$ telle que l'ensemble des solutions soit $\{\pm x_1^n, n \in \mathbb{Z}\}$.

 $D\acute{e}monstration.$ Les solutions de l'équation de Pell-Fermat sont exactement les points entiers de l'hyperbole précédente. \Box

Corollaire.

Soit d un entier naturel supérieur ou égal à 2 et sans facteur carré et tel que (-1) ne soit pas un carré modulo d, soit $A = \mathbb{Z}[\sqrt{d}]$, alors $A^{\times} \simeq \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Démonstration. Les inversibles de A sont les éléments de norme ± 1 , en prenant la norme de $\mathbb{Q}(\sqrt{d})^1$. Les inversibles sont donc les points entiers des hyperboles $X^2 - dY^2 = \pm 1$. On connaît les points entiers de $X^2 - dY^2 = 1$. L'idée est donc de montrer qu'il n'y a pas de points entiers non triviaux sur $X^2 - dY^2 = -1$. Si c'était le cas, on aurait $X^2 = -1[d]$, ce qui est absurde car (-1) n'est pas un carré modulo d.

Remarques : • Le problème des bœufs d'Hélios se résout à l'aide d'une équation de Pell-Fermat. L'entier d correspondant est de l'ordre de 10^{14} ...

• La solution fondamentale de $X^2 - 15Y^2 = 1$ est (4,1). On peut ainsi trouver toutes les solutions. Pour cela, on écrit $x_n = x_1^n$ et soit on développe, soit on trouve une relation de récurrence suivie par X_n et Y_n . Ici on a

$$x_{n+1} = (4 + \sqrt{15})x_n = (4 + \sqrt{15})(X_n + \sqrt{15}Y_n) = (4X_n + 15Y_n) + \sqrt{15}(X_n + 4Y_n),$$

d'où

$$\begin{array}{c} X_{n+1} = 4X_n + 15Y_n \\ Y_{n+1} = X_n + 4Y_n \end{array}.$$

• La solution fondamentale de $X^2 - 19Y^2 = 1$ est (170, 39). C'est plus difficile à trouver. Il y a donc encore du travail à faire.

Pour prouver l'existence de la solution fondamentale, on utilise des développements en fraction continue. Cela donne explicitement (X_1, Y_1) , mais c'est compliqué...

• Si d est premier et $d \equiv 3[4]$, on sait que (-1) n'est pas un carré modulo d. On a donc les exemples $d = 3, 7, 11, 19, \dots$

Si d = 15, on a $\left(\frac{-1}{15}\right) = -1$ donc (-1) n'est pas un carré modulo 15. On peut donc aussi appliquer le corollaire dans ce cas là

^{1.} A n'est pas toujours l'anneau des entiers de $\mathbb{Q}(\sqrt{d})$, mais ça ne change rien à la caractérisation de ses inversibles. On a toujours $A^{\times} \subset \mathcal{O}(\mathbb{Q}(\sqrt{d}))^{\times}$. L'inverse reste le conjugué.

		Adapté du travail de Paul Alphonse.
Adrien LAURENT	3	ENS Rennes - Université de Rennes 1